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We clarify two issues related to the so-called D-term in matrix ele-
ments of the energy-momentum tensor. First, we show that in a stable
system, the D-term can have either sign, contrary to claims that it must
be negative. Second, we demonstrate a logarithmic enhancement of the
α correction to the D-term in any state of the hydrogen atom. We contrast
this enhancement with the Lamb shift where it is present only in S-states.
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1. Introduction

Gravitational interaction of a particle is governed by its energy-momen-
tum tensor (EMT), Tµν . Although gravitational interactions are too weak
for present experiments to probe them, distributions of mechanical proper-
ties encoded in the EMT, such as the energy density, shear, and pressure,
can be revealed in scattering processes. For example, a very recent study [1]
determined the gluonic contribution to gravitational form factors (GFFs) of
the proton.

The GFFs were introduced in [2] and were subsequently studied in [3].
Radiative corrections to graviton–matter interaction were studied in [4]. Re-
cently, GFFs have attracted attention because indirect measurements are
possible through generalized parton distributions (GPD) [5] in processes
like deeply virtual Compton scattering (DVCS) [6]. Experiments like the
measurements of the gluonic and quark contributions to the GFFs [1, 7]
are ongoing in JLab and are planned in the future Electron–Ion Collider in
Brookhaven.
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For a spin-0 particle without internal structure, the matrix element of
Tµν between states with momenta p1 = p+ q

2 , p2 = p− q
2 is (we use ℏ = c = 1)

⟨p2 |Tµν (x)| p1⟩ =
[
2pµpν − 1

2

(
qµqν − q2gµν

)]
ei(p2−p1)x . (1)

If the internal degrees of freedom of the system become relevant at accessible
energies, the two tensor structures are modified by q2-dependent form factors
(see, for example, Ref. [8])

⟨p2 |Tµν (x)| p1⟩ =
[
A
(
q2
)
pµpν + 1

2D
(
q2
) (
qµqν − q2gµν

)]
ei(p2−p1)x . (2)

In the present paper, we are particularly interested in the D-term [8], which
we discuss with the example of a spin-0 system. Examples include a pion
(discussed in this conference [9]) or a hydrogen atom.

Comparing Eqs. (1) and (2), we see that D ≡ D
(
q2 = 0

)
= −1. It has

been conjectured that in any stable system, the D must be negative [10].
This is indeed the case for Q-balls and Q-clouds studied in [11, 12], for a
liquid drop model considered in [8], for the bag model of the nucleon in [13],
and for the chiral quark soliton model [14]. The D-term for spin-0 point-like
and composite particles is discussed in [15] and the dynamic origin of the
D-term for a spin-1/2 fermion in [15]. The D-term for pion in relativistic
theory is calculated in [16].

However, Ref. [17] provided a counterargument that the D-term can
also be positive without endangering mechanical stability. In Section 2, we
review Max von Laue’s stability criterion and discuss its connection with
the sign of the D-term. In Section 3 we discuss this sign with an example
taken from the classical mechanics.

In Sections 4 and 5, we focus on the hydrogen atom since it can be
studied analytically. In particular, it has been found that radiative effects
in D

(
q2
)

are enhanced logarithmically [17, 18]. In Section 4, we review the
logarithmic Lamb shift correction. Finally, in Section 5, we contrast it with
the logarithmic correction to the D-term.

2. von Laue’s stability criterion

In a static system, the conservation law ∂µTµν = 0 has only spatial
derivatives

∇iTiν = 0 . (3)

Momentum density Ti0 vanishes in a static system, so we consider only ν = j.
von Laue proposed [19, 20] to integrate Eq. (3) over a surface consisting of
a cross section σ of the static system and closing far away, where Tij is
assumed to vanish. We repeat here von Laue’s reasoning that led him to
formulate a criterion of stability of a system.
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We work in the system’s rest frame. One finds that the following integral
over the cross section vanishes∫

σ

T ijnjdσ = 0 , (4)

where nj are the components of a vector normal to the cross section. The
closing part of the surface does not contribute to the integral. Equation (4)
becomes a system of three equations for i = x, y, z∫

T xidy dz = 0 . (5)

We integrate this over all x ∫
T xid3r = 0 . (6)

We conclude that each component T xi, and in general each T ij , i, j = x, y, z,
integrated over the whole volume of the system gives zero. This is von Laue’s
stability condition.

As a non-trivial application, consider a drop of water in vacuum in condi-
tions of weightlessness [8]. Due to surface tension σ, there is pressure inside
the drop, p(r) = 2σ/R for r < R, where R is the radius of the drop (this is
Laplace’s formula [21]). Pressure p is a diagonal element T ii (in an isotropic
system all three such elements are the same). The stability condition (6)
tells us that ∫

p(r)d3r = 4π

R∫
0

p(r)r2dr = 0 . (7)

This vanishing of the integral is of course only possible if p(r) is negative
somewhere. There is a thin surface layer where surface tension makes T ii

negative precisely to such an extent that it cancels the positive contribution
of the bulk. This tension holds the drop together.

On the other hand, the D-term can be expressed as [8] (we assume
spherical symmetry)

D = 4πm

∫
p (r) r4dr , (8)

which has two additional powers of r in comparison with Eq. (7). This gives
larger weight to p (r) at larger values of r. If, as in the case of a liquid drop,
the negative contribution comes from the outer boundary, a negative D
results. On the other hand, other binding mechanisms may have negative p
at short distances, leading to a positive D. This is illustrated in the next
section.
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3. The energy-momentum tensor for a classical system

A negative D-term is unusual in classical mechanics. To demonstrate
this, we consider the system composed of a static charge e =

√
4πα > 0

at r = 0 (a nucleus) and a negatively charged point-like particle in circular
motion around it with radius R and velocity mv2 = α

R (we use such units
that ℏ = c = ϵ0 = 1). The EMT of the system reads

T ij(r⃗ ) = mvivjδ3 (r⃗ − x⃗(t))− EiEj +
δij

2
E⃗ 2 , (9)

where the electric field is approximated by the static Coulomb fields of the
nucleus and of the orbiting particle

E⃗ ≈ e

4π

r⃗

r3
− e

4π

r⃗ − x⃗(t)

|r⃗ − x⃗(t)|3
≡ E⃗p + E⃗e . (10)

We first show that
∫
d3r⃗ T ii(r⃗ ) = 2T + V = 0. Indeed,∫
d3r⃗ T ii(r⃗ ) = mv2 +

1

2

∫
d3r⃗E⃗ 2 , (11)

where
1

2

∫
d3r⃗ E⃗ 2 =

1

2

∫
d3r⃗

(
E⃗ 2

e + E⃗2
p

)
+

∫
d3r⃗ E⃗e · E⃗p . (12)

The self-energy contributions vanish in dimensional regularization (DR),
while the last integral simply gives the Coulomb potential∫

d3r⃗ E⃗e · E⃗p = − α

|x⃗(t)|
= −α

R
. (13)

Therefore, one simply has∫
d3r⃗ T ii(r⃗ ) = mv2 − α

R
= 2T + V = 0 (14)

equivalent to the virial theorem. We now move to the
∫
d3r⃗ r2T ii integral.

We first consider

I =

∫
d3r⃗r2

(
1

r4
+

1

|r⃗ − R⃗|4
− 2r2 − 2r⃗ · R⃗

r3|r⃗ − R⃗|3

)
, (15)
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using r2 = R2 + |r⃗− R⃗|2 +2R⃗ ·
(
r⃗ − R⃗

)
in the second term and r2 − r⃗ · R⃗ =

|r⃗ − R⃗|2 + R⃗ · (r⃗ − R⃗) in the third term, one has

I =

∫
d3r⃗

 1

r2
+

1

|r⃗ − R⃗|2
+

R2

|r⃗ − R⃗|4
+

2R⃗ ·
(
r⃗ − R⃗

)
|r⃗ − R⃗|4

− 2

|r⃗ ||r⃗ − R⃗|
+

2R⃗ ·
(
r⃗ − R⃗

)
r|r⃗ − R⃗|3

 . (16)

The first four terms all vanish in DR, leaving only

I = I1 + I2 ≡
∫

d3r⃗

− 2

|r⃗ ||r⃗ − R⃗|
+

2R⃗ ·
(
r⃗ − R⃗

)
r|r⃗ − R⃗|3

 . (17)

In DR the above can be further calculated as

I1(D) = − 2

π

∫
dα1dα2√
α1α2

∫
dDr⃗ e

−(α1+α2)r2− α1α2
α1+α2

R2

→ 4πR|D=3 , (18)

I2(D) = −2R2 2√
π

1√
π

∫
dα1dα2

√
α1α2

α1 + α2

∫
dDr⃗ e

−(α1+α2)r2− α1α2
α1+α2

R2

→ −4πR . (19)

Therefore, one simply has∫
d3r⃗ r2 T ii(r⃗ ) = mv2R2 +

e2

32π2

(
I1 + I2

)
= αR , (20)

or τ = 1
12

∫
d3r⃗ r2 T ii(r⃗ ) = αR

12 > 0. If one uses R ∼ ⟨r⟩ = 3
2αm , then

τ ∼ 1
8m , comparing to the leading order (LO) result τH = 1

4m (see Eq. (61)
in Ref. [18]).

4. Logarithmic enhancement of α corrections to the Lamb shift

In this section, we summarize Welton’s heuristic explanation of the lead-
ing part of the Lamb shift [22].

Welton argued that, although the expectation value of the electromag-
netic field strength vanishes in vacuum, there are non-zero fluctuations such
that E2

k =
〈
0
∣∣E2

k

∣∣ 0〉 ̸= 0 for all modes, where k denotes a wave vector.
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Consider the system to be enclosed in a large cube of volume V , with pe-
riodic boundary conditions. Since the vacuum energy of one mode is ωk/2,
where ωk = |k|, and on the other hand, the energy density is related to the
squares of the electric and the magnetic fields, we obtain

E2
k =

ωk

2V
. (21)

Ek is the amplitude of a plane wave, Ek exp ik ·r. The mode density of such
running plane waves is

V d3k

(2π)3
. (22)

Due to the fluctuating electric field, the electron’s position is modified
and this displacement in the Coulomb potential UC (r) = −α/r gives rise to
an extra effective potential δU

⟨UC (r + q)⟩ = UC (r) + ⟨q⟩︸︷︷︸
0

·∇UC +
1

2

〈
qiqj

〉︸ ︷︷ ︸
δij
3

⟨q2⟩

∇i∇jUC + . . . , (23)

δU = ⟨UC (r + q)⟩ − UC (r) ≃ 1

6

〈
q2
〉
∇2UC =

1

6

〈
q2
〉
α4πδ3 (r) .

(24)

In order to find the mean disturbance
〈
q2
〉
, Welton considered the equation

of motion, assuming a free electron

mq̈ = −eE , (25)

where E is the electric field. In the Fourier space, for each mode k,

−mω2qk = −eEk → qk =
e

mω2
Ek . (26)

The total disturbance, summed over all modes, including a factor 2 for two
polarizations,

〈
q2
〉

= 2

∫ ( e

mω2

)2 V d3k

(2π)3
E2

k =
2α

πm2

∫
dk

k
. (27)

For small k, this integral is cut off by energies of the order of excitations
of the atom, where the electron cannot be treated as free: kmin ∼ α2m.
For large k, it is cut off at the inverse Compton wavelength of the electron:
when the electron absorbs a large momentum, it becomes relativistic and
its increased inertia decreases its displacement. The upper limit, kmax ∼ m,
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does not contain α. Thus, the logarithmic dependence on α is determined
by the lower limit〈

q2
〉
=

2α

πm2
ln

1

α2
+ non-logarithmic terms . (28)

Substituting this into (24), we find

δU =
8

3

α2

m2
ln

1

α
· δ3 (r) . (29)

For example, in the 2S state,
〈
δ3 (r)

〉
2S

= ψ2
2S (0) = 1/8πa3B where aB is

the Bohr radius. That state’s energy changes by

⟨δU⟩2S =
m

3π
α5 ln

1

α
. (30)

This energy corresponds to the frequency of about 1000 MHz, which is the
shift observed by Lamb and Retherford [23]. We stress that the perturbing
potential δU in Eq. (24) is proportional to the Laplacian of the Coulomb
potential, which vanishes except where the electric charge is present, that is
in the nucleus. For this reason, this mechanism, giving rise to the logarithmic
enhancement, applies only to S-states (vanishing angular momentum).

5. Logarithmic correction to D-term and effective theory

Contrary to the logarithmic correction to the Lamb shift, which depends
on ∇2V , the NLO logarithm for the D-term is almost universal. Indeed, the
logarithmically-enhanced contribution reads

DNLO =
α

6π

∑
M

2v⃗0M · v⃗M0

D(EM − E0)

(
ln

4(EM − E0)
2

m2
e

− 1

4

)
, (31)

with the coefficient of the logarithm,∑
M

2v⃗0M · v⃗M0

D(EM − E0)
≡ 1

me
, (32)

being independent of any details of the bound state. To some extent, Eq. (32)
simply reflects the fact that in D-dimension, the mass dimension of any
normalized wave function equals D

2 . Indeed, if one introduces the “dilatation
operator”

D̂ = −ix⃗ · p⃗ = −xµ ∂

∂xµ
, (33)
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then it is easy to see that Eq. (32) is equivalent to

⟨0|D̂|0⟩ = D

2
, (34)

nothing but the mass dimension of the wave function ⟨x|0⟩. This connection
between the EMT form factor to the re-scaling property of the wave function
is expected, since to some extent, T ii also measures the response of the wave
function under a spatial re-scaling x⃗→ λx⃗.

Another important fact that should be mentioned is that this logarithm,
although obtained through NRQED, matches precisely to the IR logarithms
in relativistic QED for a free electron

DQED ∼ α

6πme

(
ln

4Q2

m2
e

− 11

12

)
, (35)

providing a nice demonstration of the principle of the effective field theory.
To some extent, in the presence of “criticality”, in the sense that scale separa-
tions αme

α2me
, me
αme

become large, non-trivial structures with clean boundaries
exists only near a small number of sharp peaks in the logarithmic scale. In
the intermediate energy scales such as αme ≪ µ ≪ me, “colored noises”, or
self-similar random fluctuations without clear shape/boundary, character-
ized by simple scaling law possibly with logarithmic corrections, dominate.
This vast sea of noise, although not splendid at first glance, actually serves
as an amorphous “bridge” joining smoothly the otherwise divided worlds in
the IR and UV, witnessing the “matching” between effective theories. If you
look deeper into the cloud, you see beauties, such as the spin–spin correla-
tor G(z) for the two-dimensional Ising model as a function of separation z
[24–26]

G(z) → 1

z
1
4

, (36)

or the running coupling constant g(L) for the four-dimensional critical Ising
model at scale L [27–29]

g(L) → 16π2

3 lnL
, (37)

lasting forever.
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