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Double deeply virtual Compton scattering (DDVCS) is the process
where an electron scatters off a nucleon and produces a lepton pair. The
main advantage of this process in contrast with deeply virtual and time-
like Compton scatterings (DVCS and TCS) is the possibility of directly
measuring GPDs for x ̸= ±ξ at leading order in αs (LO). We present a
new calculation of the DDVCS amplitude based on the methods developed
by R. Kleiss and W.J. Stirling in the 1980s. These techniques produce
expressions for amplitudes that are perfectly suited for implementation in
numerical simulations. Via the PARTONS software, the correctness of this
new formulation has been tested by comparing the DVCS and TCS limits
of DDVCS with independent calculations of DVCS and TCS.
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1. Introduction

Generalized parton distributions (GPDs) [1, 2] are off-forward matrix el-
ements of quark and gluon operators that represent a 3D version of the usual
parton distribution functions (PDFs). While PDFs are accessible in inclusive
processes (out of which deep inelastic scattering off the nucleon, DIS, is the
golden channel), GPDs appear in exclusive processes such as deeply virtual
and timelike Compton scattering (DVCS — the golden channel for GPDs
— and TCS), and double deeply virtual Compton scattering (DDVCS).
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To access GPDs in DDVCS [3, 4] one has to consider the exclusive elec-
troproduction of a lepton pair,

e(k) +N(p) → e′
(
k′
)
+N ′ (p′)+ µ+(ℓ+) + µ−(ℓ−) , (1)

which receives contributions not only from pure DDVCS, but also from a
QED background known as the Bethe–Heitler (BH) sub-process, vid. Fig. 1.
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Fig. 1. The DDVCS (left) and BH diagrams which are denoted BH1 (middle) and
BH2 (right). Crossed counterparts are not included.

Present interest in DDVCS is rooted in the possibility of directly access-
ing GPDs in the region of x ̸= ±ξ in a leading order (LO) analysis. This
is a consequence of the existence of two virtualities Q2 = −(k − k′)2 and
Q′2 = (ℓ++ℓ−)

2 which modifies the coefficient function that convolutes with
the GPD with respect to DVCS and TCS. In terms of the skewness ξ and
the generalized Björken variable ρ,

ξ =
−∆q̄

2p̄q̄
, ρ =

−q̄2

2p̄q̄
, (2)

where p̄ = (p+ p′)/2, q̄ = (q+ q′)/2, and ∆ = p′− p, the DDVCS amplitude
depends on the GPDs via the Compton form factors (CFFs)

CFF ∼ PV

 1∫
−1

dx
1

x− ρ
GPD(x, ξ, t)

−
1∫

−1

dx iπδ(x− ρ)GPD(x, ξ, t)± · · ·

(3)
Here, the + (−) sign corresponds to axial (vector) GPDs, the ellipsis ac-
counts for x → −x terms, PV stands for Cauchy’s principal value, and
t = ∆2 is the usual Mandelstam variable. As a result, one can measure
GPDs for x = ρ for which ρ ̸= ±ξ as long as both virtualities Q2, Q′2 are
non-zero. This is different from the DVCS case1 for which the CFFs in the
amplitude enter as in Eq. (3) with ρ → ξ. This restricts the LO study of
GPDs to the line x = ξ.

1 or TCS with ξ → −ξ
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Although a quite detailed study of the phenomenological peculiarities of
DDVCS already exists [5], we revisit this process in view of the near future
experiments at both fixed target facilities [6–8] and electron–ion colliders
[9, 10]. For this purpose, we [11] make use of the Kleiss–Stirling (KS) tech-
niques [12, 13], which deal directly with the amplitude and render expres-
sions that are perfectly suited for implementation in the PARTONS platform
[14] and so for phenomenological studies.

2. Formulation à la Kleiss–Stirling

In the 1980s, Kleiss and Stirling developed some spinor techniques to
compute scattering amplitudes as an alternative to the usual approach based
on dealing with traces of the Dirac-gamma matrices. In that regard, the fol-
lowing products of spinors for two light-like vectors a and b become the
building blocks of the amplitudes and define two scalars (± stand for helic-
ities)

s(a, b) = ū(a,+)u(b,−) = −s(b, a) , (4)
t(a, b) = ū(a,−)u(b,+) = [s(b, a)]∗ . (5)

Explicit computation of these bilinears shows that s(a, b) acquires the
simple form

s(a, b) =
(
a2 + ia3

)√ b0 − b1

a0 − a1
− (a ↔ b) , (6)

as long as a · κ0 ̸= 0 and b · κ0 ̸= 0 with κµ0 = (1, 1, 0, 0).
In turn, we can define two functions that will play a key role in the

computation: the contraction of two currents

f
(
λ, k0, k1;λ

′, k2, k3
)
= ū(k0, λ)γ

µu(k1, λ)ū
(
k2, λ

′) γµu (k3, λ′)
= 2[s(k2, k1)t(k0, k3)δλ−δλ′+ + t(k2, k1)s(k0, k3)δλ+δλ′−

+s(k2, k0)t(k1, k3)δλ+δλ′+ + t(k2, k0)s(k1, k3)δλ−δλ′−] , (7)

and the contraction of a current with a light-like vector a

g(s, ℓ, a, k) = ū(ℓ, s)/au(k, s) = δs+s(ℓ, a)t(a, k) + δs−t(ℓ, a)s(a, k) . (8)

2.1. Example: BH1 à la KS

Making use of the quantities defined above, for the case of the middle
diagram in Fig. 1 which corresponds to the first BH contribution, namely
BH1, the amplitude of this sub-process reads (up to propagators and factor
ie4)
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iM̃BH1 = (F1 + F2)
∑
L

f
(
sℓ, ℓ−, ℓ+; s, k

′, L
) (

Ys2s1f
(
s, L, k; +, r′s2 , rs1

)
+Zs2s1f

(
s, L, k;−, r′−s2 , r−s1

) )
− F2

2M
J (2)
s2s1

∑
L,R

f
(
sℓ, ℓ−, ℓ+; s, k

′, L
)
g(s, L,R, k) , (9)

where F1, F2 are the electromagnetic form factors, M is the target mass, and
J (2) is a combination of scalars in Eqs. (4) and (5) dependent on the spin
and momentum of the target in its final (s2, p′) and initial (s1, p) states. Y, Z
are complex phases dependent on the target states too. Sums run over two
sets of light-like momenta2, namely L ∈ {k′, ℓ−, ℓ+} and R ∈ {r1, r2, r′1, r′2},
where p = r1+r2 and p′ = r′1+r′2. Equation (9) can be clearly interpreted in
terms of contractions of leptonic and hadronic currents as well as momenta
via definitions (7) and (8).

3. DVCS and TCS limits

In this section, we numerically check our results against the DVCS and
TCS limits, which were previously worked out in [15, 16] and implemented in
the PARTONS framework. In these tests, we consider the Goloskokov–Kroll
GPD model, see for example Ref. [17]. The renormalization and factoriza-
tion scales are µ2

R = µ2
F = Q2 + Q′2, while the skewness and generalized

Bjorken variables are evaluated at t = 0, which is equivalent to drop terms
proportional to t/(Q2+Q′2). Without denying the importance of NLO cor-
rections to the amplitudes [18, 19], we stay at the Born order level for the
time being. The cross sections are given as a function of seven variables out
of which three are angles: ϕ which describes the azimuthal direction of the
final-state hadron with respect to the electron beam plane, and ϕℓ and θℓ
which represent azimuthal and polar orientations of the muon in the pro-
duced lepton pair center-of-mass frame, respectively. The first one is given
according to Trento’s convention [20], while the other two are considered in
the BDP frame [16].

In Fig. 2, CFF H is depicted as a function of ξ as it reaches the DVCS
limit (Q′2 = 0). Points corresponding to proper DVCS are computed with an
independent code available in PARTONS and, as it is shown, DDVCS’ CFF
H approaches the DVCS value without discontinuities. The same conclusion
is reached when the TCS limit and other CFFs are considered.

2 Electron, muon, and antimuon are considered massless.
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Fig. 2. Left: Imaginary part of CFF H(ξ, t = −0.15 GeV2) as a function of the
skewness ξ for subsequently smaller values of Q′2 and comparison with DVCS CFF
H (Q′2 = 0). The value of spacelike virtuality is taken to be Q2 = 1.5 GeV2. Right:
zoom in the region ξ ∈ (0.01, 0.04).

As Q′2 → 0, the DVCS cross section is recovered from DDVCS. The
relation between these two processes comes as∫

dΩℓ
d7σ

dxB dQ2 dQ′2 d|t|dϕ dΩℓ︸ ︷︷ ︸
DDVCS

Q′2→0−−−−→
(

d4σ

dxB dQ2 d|t|dϕ

)
︸ ︷︷ ︸

DVCS

N
Q′2 , (10)

where we have integrated-out the lepton pair and accounted for the splitting
of the outgoing virtual photon into the pair via the factor N = αem/(3π) [21],
and xB denotes the Bjorken variable. Prescription (10) holds also for the
BH1 contribution.

In the same way, as Q2 → 0, DDVCS tends to TCS. In this case, one
needs to consider the photon flux, Γ , calculated under the equivalent-photon
approximation (EPA) [22, 23] and integrate over ϕ∫

dϕ
d7σ

dxB dQ2 dQ′2 d|t|dϕ dΩℓ︸ ︷︷ ︸
DDVCS

Q2→0−−−−→
(

d4σ

dQ′2 d|t|dΩℓ

)
︸ ︷︷ ︸

TCS

d2Γ

dxB dQ2
, (11)

where

d2Γ

dxB dQ2
=

αem

2πQ2

(
1 +

(1− y)2

y
− 2(1− y)Q2

min

yQ2

)
ν

ExB
. (12)

Here,

ν =
Q2

2MxB
and Q2

min =
(yme)

2

1− y
(13)



7-A24.6 K. Deja et al.

are the energy carried away by the incoming virtual photon and the min-
imum value of the spacelike virtuality for which me is the electron mass,
respectively. Prescription (11) holds also for the BH2 contribution.

The comparison for cross sections is shown in Fig. 3 for DDVCS against
DVCS and TCS, and in Fig. 4 for the BH backgrounds. Also here, the proper
DVCS and TCS processes are evaluated with independent codes available in
PARTONS. These codes are numerical implementations of works published
in Refs. [15] and [16].
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Fig. 3. Pure DVCS (left) and TCS (right) contributions to the cross section
versus the corresponding limit of DDVCS. Left: xB = 0.2, t = −0.25 GeV2,
Q2 = 40 GeV2, and incoming electron beam energy E = 160 GeV. Right:
xB = 10−4, t = −0.25 GeV2, Q′2 = 33 GeV2, θℓ = 1.04π/4 rad, and E = 160 GeV.
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Fig. 4. The BH contribution to the DVCS (left) and TCS (right) cross sections
versus the corresponding limit of DDVCS. Left: xB = 0.04, t = −0.1 GeV2, Q2 =

10 GeV2, and incoming electron beam energy E = 160 GeV. Right: xB = 10−4,
t = −0.1 GeV2, Q′2 = 3 GeV2, θℓ = 1.04π/4 rad, and E = 160 GeV.
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Testing for different ratios of |t|/Q2 and |t|/Q′2, we conclude that the
slight disagreement observed in Fig. 3 is the result of kinematical higher
twists. These effects come from the different frames used to describe DDVCS,
DVCS, and TCS. Since there is no twist expansion for pure QED processes,
the BH contributions in Fig. 4 show a perfect matching.

As a final remark, on top of these consistency checks, we are working on
the predictions for cross sections and asymmetries assessing the measurabil-
ity of DDVCS in both, current (JLab12) and future experiments (JLab20+,
EIC) [11].
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