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In this work, we derive the cross section for inclusive DIS dijet pro-
duction at full next-to-eikonal order. We include the corrections that stem
from taking a finite width of the target, the interaction of the quark with
the transverse component of the background field, and also the dynamics
of the target.
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1. Introduction

The results of this work are computed in the framework of the Color
Glass Condensate (CGC) effective theory [1]. CGC is defined in the limit of
very high energies where one keeps the resolution scale fixed (Regge–Gribov
limit) and modifies the Bjorken-x in order to make it smaller and smaller,
hence it is also called the small-x limit. The CGC formalism is used for the
case of high-energy dilute-dense scattering where two approximations are
taken into account. First, the semi-classical approximation, where the dense
target is treated as the classical background field, Aµ

a(x), and the dilute
projectile, in this case, is taken as a virtual photon treated in perturbation
theory. The second approximation is the eikonal approximation, which is
discussed in the next section. These proceedings present the results that
were obtained in [2].

2. The eikonal approximation and corrections

As previously mentioned, in the framework of CGC, it is very common
to adopt the eikonal approximation which is analogous to taking the asymp-
totically high-energy limit s→∞. In this limit, we boost the target, which
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develops a hierarchy among the different components of the background field
Aµ

a(x) and its coordinates

Aµ
a(x)→


γtA

−
a

(
γtx

+, 1
γt
x−,x

)
1
γt
A+

a

(
γtx

+, 1
γt
x−,x

)
Ai

a

(
γtx

+, 1
γt
x−,x

) ,

where γt is the Lorentz boost factor. From this follows that the power-
enhanced component is A−

a , and that the hierarchy among coordinates sets
x+ as enhanced and the x− as suppressed. In order to take the eikonal
limit, one needs to take three different approximations. The first one is the
so-called shockwave approximation and it relies on taking the background
field to be localized at x+ = 0, so we have Aµ

a(x) ∝ δ(x+); the second
one is to disregard the components of the background field that are not
power-enhanced in energy, so Aµ

a(x) ≃ δµ−A−
a (x). Finally, in the last ap-

proximation, the power-suppressed coordinate dependence is not taken into
account, therefore one finds Aµ

a(x) ≃ Aµ
a(x+,x).

If one wants to go to next-to-eikonal (NEik) corrections, one has to relax
any of the three aforementioned approximations. Relaxing the first approxi-
mation would give a finite width of the target, allowing a transverse motion
of the parton within the medium. Relaxing the second approximation, we
would need to include the interactions with the perpendicular component
of the background field. These corrections have been taken into account in
[3–5]. However, in our most recent work [2], we also relaxed the third ap-
proximation, therefore including the dependence on the x− coordinate. The
final result is then at full next-to-eikonal order in the gluon background field.
These corrections were also implemented in [6] at the level of the propagator.

3. Inclusive DIS dijet production

The computation of the inclusive DIS dijet production is mostly moti-
vated by the fact that it is one of the processes that the future Electron–Ion
Collider (EIC) will focus on. The energies that the EIC will probe are lower
when compared to the ones at the Large Hadron Collider (LHC), where the
eikonal approximation is used. Therefore, computing the process at next-
to-eikonal order would give us corrections in the energy of the order of 1/s
that will be of significant importance for the EIC.

In order to compute this process, one needs to take into account the
contribution of two types of diagrams. The first diagram corresponds to the
splitting of the photon into a quark–antiquark pair before the medium, and
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it contributes at both eikonal and NEik orders. The second diagram corre-
sponds to the splitting into a quark–antiquark pair inside the medium. This
diagram contributes only at NEik order, since, the shockwave approximation
has to be relaxed in order to compute this diagram.

4. Cross section for inclusive DIS dijet production

In this section, we present the cross section for DIS dijet production,
where we set k1, k2 to be the final momenta for the quark and antiquark,
and q to be the initial momentum of the photon. We computed the cross sec-
tion for both the longitudinal and the transverse polarization of the photon.
The longitudinal polarization amounts to taking ϵλµ(q) → ϵLµ(q) ≡

Q
q+

g+µ ,
where Q is the virtuality of the photon. The transverse polarization is{
ϵ+λ (q) = 0, ϵiλ(q) = εiλ, ϵ

−
λ (q) =

qiεiλ
q+

}
. In the case of the transverse polar-

ization of the photon, we get contributions from both diagrams that cor-
respond to the splitting of the photon either before or inside the medium.
However, for the longitudinal polarization of the photon, only the diagram
corresponding to the splitting of the photon before the medium gives non-
vanishing contributions. In [2], we computed the complete set of propagators
and amplitudes taking into account all the aforementioned corrections. This
led to the following decorations on Wilson lines that we can find in the cross
section:

U (1)
F ;j(v) =

L+

2∫
−L+

2

dv+ UF
(
L+

2
, v+;v

)
←→
DvjUF

(
v+,−L+

2
;v

)
,

U (2)
F (v) =

L+

2∫
−L+

2

dv+ UF
(
L+

2
, v+;v

)
←−−
Dvj

−−→
DvjUF

(
v+,−L+

2
;v

)
,

U (3)
F ;ij(v) =

L+

2∫
−L+

2

dv+ UF
(
L+

2
, v+;v

)
gt·Fij(v)UF

(
v+,−L+

2
;v

)
,

where L+ is the finite width of the target.
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4.1. NEik DIS dijet production cross section via longitudinal photon

The cross section for the longitudinal polarization of the photon is the
sum of the generalized eikonal result and the explicit next-to-eikonal cor-
rections. The so-called generalized eikonal result is when the Wilson lines
depend on the b− coordinate. If this b− is set to be zero, one would recover
the strict eikonal result. This generalized eikonal cross section expressed in
terms of dipoles (d) and quadrupoles (Q) is given by

dσγ∗
L→q1q̄2

dP.S.

∣∣∣∣∣
GenEik

= Nc
αem

π
e2f Q

2 θ
(
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+
2

)
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)
×k+1 k

+
2

(q+)5
(
q++k+1 −k

+
2

)2 (
q+−k+1 +k+2

)2
×

∫
v,v′,w,w′

eik1·(v′−v) eik2·(w′−w)K0

(
Q̂|w′ − v′|

)
K0

(
Q̂|w − v|

)

×
∫

d
(
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)
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×
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(
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,

where αem = e2/(4π), K0 is the modified Bessel function and Q̂ =√
m2 +

(q++k+1−k
+
2 )(q+−k+1+k

+
2 )

4(q+)2
Q2. The corrections are presented in terms of

quadrupoles (Q̃,Q
(1)
j and Q(2)) and dipoles (d̃, d(1) and d(2)) defined in [2].

These decorated quadrupoles and dipoles include the different decorations
on the Wilson lines. The explicit beyond eikonal corrections in the cross
section are

dσγ∗
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,
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dσγ∗
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where Q̄ ≡
√

m2 +Q2 k
+
1 k+2

(q+)2
.

4.2. NEik DIS dijet production cross section via transverse photon

In the case of the transverse polarization of the photon, the cross section
is divided into a generalized eikonal part and explicit NEik corrections. The
generalized eikonal cross section is
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and the explicit beyond eikonal corrections are
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dσγ∗
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dP.S.

∣∣∣∣∣
dyn target

NEik corr

= 2πδ
(
k+1 +k+2 −q

+
)
Nc

αem

π
e2f

k+1 k
+
2

(
k+2 −k

+
1

)
(q+)3

×2Re (−i)
∫

v,v′,w,w′

eik1·(v′−v) eik2·(w′−w)

×
[
Q̃(w′,v′,v∗,w∗)− d̃(v∗,w∗)

]{
1

2

[
1 +

(
k+2 −k

+
1

q+

)2
]

×(w′−v′)·(w−v)
|w′−v′|

Q̄K1

(
Q̄ |w′−v′|

)
Q2K0

(
Q̄ |w−v|

)
+m2Q2K0

(
Q̄ |w′−v′|

) |w−v|
Q̄

K1

(
Q̄ |w−v|

)
+2

(w′−v′)·(w−v)
|w′−v′||w−v|

Q̄2K1

(
Q̄ |w′−v′|

)
K1

(
Q̄ |w−v|

) }
,

dσγ∗
T→q1q̄2

dP.S.

∣∣∣∣∣
dec on q

NEik corr

= 2πδ
(
k+1 +k+2 −q

+
)
Nc

αem

π
e2f

2k+2
q+

×2Re
∫

v,v′,w,w′

eik1·(v′−v) eik2·(w′−w)

×

{[
(
kj
2−k

j
1

)
2

+
i

2
∂wj

(Q(1)
j

(
w′,v′,v∗,w

)
−d(1)j (v∗,w)

)

−i
(
Q(2)

(
w′,v′,v∗,w

)
−d(2) (v∗,w)

)]

×

[
1

2

(
1 +

(
k+2 −k

+
1

q+

)2
)

(w′−v′)·(w−v)
|w′−v′||w−v|

×Q̄2K1

(
Q̄|w′−v′|

)
K1

(
Q̄|w−v|

)
+m2K0

(
Q̄ |w′−v′|

)
K0

(
Q̄|w−v|

) ]

+

(
k+1 −k

+
2

)
q+

(
w′i−v′i

) (
wj−vj

)
|w′−v′||w−v|

Q̄2K1

(
Q̄ |w′−v′|

)
K1

(
Q̄ |w−v|

)
×
(
Q

(3)
ij

(
w′,v′,v∗,w

)
−d(3)ij (v∗,w)

)}
,



7-A25.8 T. Altinoluk et al.
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.

As in the previous case, this result is presented in terms of the decorated
dipoles (d̃, d(1), d(2), and d

(3)
ij ) and quadrupoles ( Q̃,Q

(1)
j , Q(2), and Q

(3)
ij )

that are defined explicitly in [2].
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