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We calculate the differential cross section dσ/dt for the diffractive pho-
toproduction process γp→ ρp and compare it to recent experimental data
extracted by the CMS Collaboration. Our model is based on two-gluon
exchange in the non-perturbative domain. We take into account both the
helicity-conserving and the often neglected helicity-flip amplitudes in the
γ → V transition, which can contribute at finite t. The shape of the dif-
ferential crosssection as well as the role of helicity-flip processes is strongly
related to the dependence of the unintegrated gluon distribution on the
transverse momenta in the non-perturbative region. Results for different
unintegrated gluon distribution are shown.
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1. Introduction

The exclusive photoproduction of vector mesons is one of the intensively
studied processes at high energies. For the light vector mesons, the energy
dependence displays a “soft Pomeron” behaviour and follows one of the to-
tal γp photoabsorption cross section. Our work was motivated by a recent
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measurement of the differential cross section dσ/dt for diffractive ρ0 pro-
duction [1]. The t-dependence of the cross section was advocated as a probe
of gluon saturation effects. These calculations, which are formulated in the
colour dipole approach, also restrict themselves to the helicity-conserving
part of the amplitude. We compare our results obtained using a variety of
unintegrated gluon distributions available in the literature.

2. Formalism for the exclusive production of vector meson
in photon–proton collisions

The amplitude for the exclusive production of a vector meson is shown
schematically in Fig. 1. The imaginary part of this amplitude can be writ-
ten as
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The ρ-meson is treated as the pure s-wave bound state of light quarks with
the constituent quark mass taken as mq = 0.22 GeV. As to the vector meson
radial light-front wave function (LFWF), we use the Gaussian parametriza-
tion [2].
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Fig. 1. Feynman diagram for the γp→ ρp diffractive amplitude.

The s-chanel helicity-conserving T → T transition, where λγ = λV , is
given by the formula

I(T, T )(λV =λγ) = m2
qΦ2 +

[
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(kΦ1)

+
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The helicity flip by one unit, i.e. from the transverse photon λγ = ±1
to the longitudinally polarized meson λV = 0

I(L, T ) = −2Mz(1− z)(2z − 1)(eΦ1)

[
1 +

(1− 2z)2

4z(1− z)

2mq

M + 2mq

]
+

Mmq

M + 2mq
(2z − 1)(ek)Φ2 . (3)

The helicity-flip by two units, from the transverse photon λγ = ±1 to
the transversely polarized meson with λV = ∓1

I(T, T )(λV =−λγ) = 2z(1− z)(Φ1xkx − Φ1yky)
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M + 2mq

[(
k2x − k2y

)
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For the function G(∆2), we have considered two options: an exponential
parametrization and a dipole form factor parametrization often used in non-
perturbative Pomeron models [2].

3. Results

In Fig. 2, we show our results for the Ivanov–Nikolaev UGD [3] using
the exponential parametrization for G(∆2). We show the T → T helicity-
conserving contribution by the long-dashed line. The dotted line shows the
T → L transition, where the helicity is changed by one unit. Finally, by the
dash-dotted line, we display the T → T ′ transition, where |λγ − λV | = 2.
We observe that the T → T contribution has a dip at −t ∼ 0.5÷0.7 GeV−2,
which position is slightly dependent on the collisions energy. The T → L
transition itself possesses a dip at −t ∼ 0.2 GeV−2 but in this region, the
T → T transition vastly dominates. The double helicity-flip contribution is
very small throughout the whole kinematic region.

We show for convenience the results for all UGDs summed over all helicity
combinations in Fig. 3. Here, we use the dipole parametrization for G(∆2).
We observe that some qualitative features, like the position of the dip, are
very similar to the previous case, however, the cross section develops a much
harder tail at large −t. For the KMR UGD [4], the helicity-conserving part
dominates throughout. In this case, there is no dip in the differential cross
section. The description of data is very good except for the highest energy,
where the t-dependence is too hard. For the Kutak–Staśto UGD [5], we
observe no dip and a complete dominance of the helicity-conserving process.
Also the results for the GBW UGD [6] have no dip within the measured
region, and again the helicity-flip transitions are negligible. The results for
MPM UDG [7] give a very good description of data. Also here, the helicity-
flip transitions are negligible, and the general behaviour is close to that for
the GBW UGD.
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Fig. 2. Distribution in t, the four-momentum transfer squared in the γp → ρp

reaction, for different energies and the Ivanov–Nikolaev UGD. Here, the exponential
parametrization of the form factor G(∆2) was used.

4. Conclusions

We have studied the role played by the often neglected helicity-flip am-
plitudes, which can contribute at finite t. The large |t|-behaviour dσ/dt
depends on the form factor describing the coupling of the Pomeron to the
p→ p transition, while the dip-bump structure depends rather on the UGD
used. We have included traditional T → T contribution as well as somewhat
smaller subleading T → L and T → T ′ (double spin-flip) contributions. The
relative amount and differential shape of the subleading contributions de-
pend on the UGD used. All UGDs generate dips also for T → L transition
and some of them generate dips for T → T transition. More results can be
found in our recent paper [2].
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Fig. 3. Distribution in |t| for different energies for the different UGDs. Here, the
dipole parametrization of the form factor G(∆2) was used.
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