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Nuclear parton distribution functions (nPDFs) are crucial in studying
nuclear structure and high-energy nuclear collisions. nPDFs have been
determined via ‘global QCD analyses’, in which the nPDF-dependent pre-
dictions for a given process are compared with their actual measurements.
One of the challenging parts of nPDF extractions is the estimation of un-
certainties. The most common approach for this purpose is the Hessian
method, which, however, has certain shortcomings, especially in the case
of weaker data constraints. Here, we will show a case study for an alterna-
tive approach where nPDF uncertainties are estimated using Markov Chain
Monte Carlo (MCMC) methods.
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1. Introduction

Parton distribution functions (PDFs) are an essential part of predictions
of hadronic observables. They characterize the quark and gluon content of
nucleons. So far, we cannot reliably compute PDFs from first principles,
and we need to determine them by comparing (fitting) PDF-dependent pre-
dictions with the corresponding experimental measurements in a process
called ‘global QCD analysis’ [1, 2]. Such an approach is possible due to the
factorization property of quantum chromodynamics (QCD), which provides
us with a framework to calculate such PDF-dependent predictions. When
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describing the structure of a nucleus, analogous reasoning can be used. How-
ever, the PDFs of a nucleus are modified compared to a simple combination
of free nucleon PDFs. Such modified quantities, known as the nuclear PDFs
(nPDFs), also need to be determined in global QCD fits. Several collabo-
rations provide nPDFs [3–5] obtained using different fitting frameworks. In
this contribution, we present the preliminary results of a study using the
nCTEQ global analysis framework. One of the key elements of this frame-
work is the parameterization of the PDF of the nucleus f

(A,Z)
i [6]

f
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where A is the atomic number, Z is the number of protons in a given nucleus,
and f

p(n)/A
i is the effective bound proton (neutron) PDF, which at the initial

scale Q0 is parametrized in the following way:

xf
p/A
i (x,Q0) = c0x

c1(1− x)c2ec3x (1 + ec4x)c5 . (2)

The PDF of a parton i in a nucleus A depends on a fraction x of the average
nucleon momentum and Q the factorization scale representing the hard scale
of the collision. Additionally, the dependence on the nucleus mass, A, is
introduced in the ck coefficients as

ck → ck(A) ≡ pk + ak

(
1−A−bk

)
, k = {1, . . . , 5} . (3)

The Markov Chain Monte Carlo (MCMC) method is a powerful tool
to sample complex probability distributions [7]. It is based on building a
Markov chain in which each state is made by drawing a sample from a
proposal distribution and accepting or rejecting the sample based on a cer-
tain criterion — the most commonly used one is based on the Metropolis–
Hastings (MH) algorithm [8]. The algorithm proceeds by iteratively generat-
ing a sequence of samples that converge to the target distribution, allowing
for efficient exploration of the parameter space. In the context of standard
Monte Carlo sampling, the error estimation can be calculated by

σ2
MC =

1

N − 1

N∑
t=1

[
O
(
{ck}t

)
− µ (O)

]2
, (4)

where σMC is the standard deviation, µ is the corresponding mean value, O
represents any observable/function depending on the random sample {ck},
and N is the number of units in the sample. However, in the MCMC method,
due to the Markovian property, the units of a sample are correlated, which
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can be measured by the autocorrelation function (ACF)1. In this case, we
need to take into account the autocorrelations via the autocorrelation time,
τint, which can be estimated as the sum of ACF over all lags [9]2

σ2
MCMC = 2τintσ

2
MC +O

(τint
N

)
. (5)

2. Methodology

The goal of this work is to find the set of nPDF parameters that maxi-
mizes the posterior probability distribution given the experimental data. For
this purpose, we first construct a likelihood function regarding the nCTEQ
parametrization that incorporates experimental uncertainties. Using Bayes’
theorem, the posterior function is defined in terms of likelihood and prior.
The MCMC algorithm is then used to generate a Markov chain of the nPDF
parameters that samples from the posterior probability distribution. The
nPDF parameters are varied during the MCMC iterations to improve the
agreement between the model predictions and the experimental data. The
algorithm explores the parameter space by generating new sets of param-
eters based on the previous ones, with a probability that depends on the
posterior. The uncertainty estimation is done through the analysis of the
Markov chain generated by the algorithm. It can be challenging, particularly
when dealing with high-dimensional parameter spaces or complex models.
To ensure accurate uncertainty estimates, it is important to carefully eval-
uate the Markov chain and choose appropriate convergence diagnostics and
statistical measures such that one is confident the chain has converged to
the posterior distribution.

Aside from the high computational cost, one of the challenges with us-
ing MCMC to find PDFs is dealing with autocorrelations. Since the samples
generated in chains can be highly correlated, they do not effectively explore
the entire parameter space. This can lead to slow convergence and inefficient
sampling, making it difficult to obtain accurate parameter estimates. Thin-
ning is a method used in the MCMC algorithms to reduce autocorrelation
in the generated samples [10, 11]. The basic idea of thinning is to keep only
every lth sample in the Markov chain and discard the rest. The choice of
the thinning parameter l should be carefully tuned to balance the reduction
in autocorrelation with the loss of efficiency/information.

1 A low autocorrelation between samples is desired in MCMC since each sample pro-
vides independent information about the target distribution, and hence the uncer-
tainty estimates are reliable.

2 Lag refers to the distance between two points in a chain.
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3. Results

To determine nPDFs using the MCMC method, we first perform a sim-
plified test with a restricted number of parameters and data to keep the
efficiency under control and be able to test different algorithms and set-
tings. We used the adaptive MH algorithm [12, 13] to generate a Markov
chain for 10 nPDF parameters (3 for u-valence, 3 for d-valence, 2 for light sea
quarks, and 2 for gluons), see Fig. 1. In this preliminary study, we restrict
ourselves only to data from deep-inelastic scattering (DIS) experiments (in-
cluding NMC, JLAB, and SLAC) which cover more than 15 different nuclei.
In the next step, we performed thinning. This was done for two reasons:
Firstly, to reduce the autocorrelation (see Fig. 2) and to be able to esti-
mate the uncertainty using the standard prescription for Monte Carlo errors
from Eq. (4) rather than MCMC error estimation (including autocorrelation
time). Secondly, to generate an LHAPDF set of PDF grids [14] (a standard
format for distributing PDFs), we need to limit the number of chain units
to make it feasible and user-friendly. In Fig. 3, we compare the u-valence
nPDF from the thinned chain with different thinning rates l. As we can
see, for a higher thinning rate (200, represented by the red/black curve),
we have a larger uncertainty. Whereas uncertainties obtained with thinning
rates equal to 100 and 50 are basically identical. This indicates that thin-
ning with l = 200 removes too much information, and a lower rate needs to
be used to faithfully represent the uncertainties.

Fig. 1. Chains representing a time series of parameter values (10 nPDF parameters).
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Fig. 2. Autocorrelation function (ACF) versus lag, before (left) and after (right)
thinning. Here the thinning rate is 50.

Fig. 3. (Color online) Full-PDF (left) and ratio-PDF (right) for thinned chain of
Fig. 1. We compare the generated PDFs with different thinning parameter l : (200,
100, 50). The replicas are LHAPDF members. Each thinned chain unit corresponds
to a replica PDF.
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4. Conclusion

Despite the challenges, MCMC has proven to be a powerful tool for
determining PDFs. It provides a robust and statistically rigorous framework
for extracting PDFs from experimental data. The promising results that we
obtained were for a simplified analysis, and now they need to be scaled up
for more parameters and more data. Furthermore, we will also perform the
analysis using the standard Hessian method and compare the results of the
two approaches.
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