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In these proceedings, we briefly show an alternative formalism to per-
form a stability analysis of inhomogeneous phases in QCD. We discuss how
it is more general than the “classic” framework and some peculiarities with
respect to its application to QCD-like theories.
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1. Introduction

The phase diagram of Quantum Chromo-Dynamics (QCD) is far from
being fully understood. Amongst the several unorthodox phases being cur-
rently hypothesised, inhomogeneous phases belong to the ones most studied.
Within models of the underlying theory, QCD, these phases are really very
common. The most basic example is the Gross–Neveu (GN) model, a scalar
contact interaction model of fermions in 1+1 dimensions. This is a good case
study, given that much can be done analytically within the GN model, and
a crystalline phase at large chemical potential, low temperatures does ap-
pear in the phase diagram [1]. One of the natural developments beyond the
GN model would be, for instance, the Nambu–Jona-Lasinio (NJL) model.
Usually, scalar, pseudoscalar, and sometimes vector and pseudovector con-
tact interactions between fermions in 3 + 1 dimensions are introduced [2].
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Another alternative model which retains some of the features of QCD and
is used to model some of its physics is the Quark–Meson (QM) model [3, 4],
which is based on meson-mediated interactions rather than contact interac-
tions. Both within the NJL and QM models, these inhomogeneous phases
were also found [5].

One work within the underlying theory, QCD, does exist [6]. Within the
framework of Dyson–Schwinger Equations (DSE), they managed to find an
inhomogeneous phase. Although no full confirmation that such a solution
was more stable than the homogeneous ground state was attained, some
necessary conditions for such were verified (for more details, see [7]). Thus,
more and more confidence and excitement arose.

Some recent results, however, have dampened this excitement and cer-
tainly shaken the confidence that such inhomogeneous phases could exist
in QCD. Lattice studies of the GN/NJL models with more than one spa-
tial dimension [8–10] showed the region of the phase diagram where inho-
mogeneous phases are more stable to be highly regulator-scale-dependent,
regulator-scheme-dependent, and in the limit where the regulator is taken
to infinity, inhomogeneous phases are no longer found. This tension calls
for more QCD-based studies and, in particular, some framework where the
existence or in-existence of these phases can be guaranteed.

In these proceedings, we briefly review one of the methods used in model
studies of inhomogeneous phases in QCD, namely, the stability analysis. We
explain why such a framework is not suited to study inhomogeneous phases
in QCD and show a novel method which is suited to tackle the issue.

2. Classical stability analysis

Take, for instance, an NJL model with scalar and pseudo-scalar interac-
tions, in any dimension

L = ψ̄(i/∂ −m)ψ +G
{(
ψ̄ψ

)2
+
(
ψ̄iγ5τ⃗ψ

)2}
. (1)

The “classical” method of performing a stability analysis goes as follows. We
assume the condensates of the theory may be inhomogeneous, that is, the
condensates can depend on the configuration space variable

ϕS(x) =
〈
ψ̄(x)ψ(x)

〉
, ϕP(x) =

〈
ψ̄(x)iγ5τ

3ψ(x)
〉
. (2)

It is an elementary exercise in many-body quantum field theory to write the
thermodynamic potential in the mean-field approximation (see, for instance,
[11]). It reads as follows:

ΩMF = −T
V

Tr log

(
S−1

T

)
+G

1

V

∫
d3x

(
ϕ2S(x) + ϕ2P(x)

)
. (3)
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We may then take the homogeneous solutions of the model and expand
around them, considering only small fluctuations. We assume the conden-
sates can be written as

ϕ(x) = ϕ̄+ δϕ ,

where ϕ̄ is the homogeneous condensate, obtained by solving the homoge-
neous gap equation. We can then expand the functional ΩMF[ϕ] around
the δϕ = 0 point. The zeroth order contribution is, naturally, the homoge-
neous thermodynamic potential ΩMF[ϕ̄], the first order always vanishes by
the gap equation Ω(1) = 0, and the second order is the leading (non-trivial)
order. For a detailed explanation of this procedure, the reader is referred to
Ref. [12]. For our intents and purposes, it suffices to show the final result.
The leading order contribution can be written as

Ω(2) = 2G2
∑
qk

{∣∣δϕS,qk

∣∣2D−1
S

(
q2k

)
+
∣∣δϕP,qk

∣∣2D−1
P

(
q2k

)}
, (4)

where D−1
S and D−1

P are the scalar and pseudoscalar inverse meson propaga-
tors calculated within the model, δϕS,qk

and δϕP,qk
are the Fourier modes of

the condensate fluctuations with 3-momentum qk (note that ϕ(x) is always
taken to be static and x0 independent). Therefore, by the mathematical
structure of Eq. (4) we can see that, if and only if the inverse meson prop-
agators become negative for any non-zero 3-momentum, the value of Ω(2)

can become negative and, thus, lower the free energy as compared with the
homogeneous case.

The philosophy behind the stability analysis being as stated, we calculate
a stability condition (negativity or positivity of which, depending on how
it is defined, implies stable or unstable), which in this “classical” framework
happens to be the inverse meson propagators. Therefore, we can easily
calculate whether or not the homogeneous ground state, within these models,
is unstable against the formation of small inhomogeneous condensates.

However, this is only possible given the two important conditions: (1)
that the thermodynamic potential can be written as a functional on the
condensates alone Ω[ϕ], and (2) that the mathematical structure of Ω(2) is
compatible with writing a stability condition. Condition (2) might not be
self-evident at this point, however, it is as crucial as condition (1). Had it
not been possible to write Ω(2) as something, namely, the stability condi-
tion (here, the inverse meson propagators) times a mod-squared — hence,
strictly positive — contribution |δϕ|2 of the fluctuations, it would not have
been possible to perform a stability analysis, being completely agnostic with
respect to the shape of δϕ. These conditions are in no way interdependent.
It is easy to conceive that Ω could be written as a function of the potentials
ϕ only, but Ω(2) could depend on, say, δϕ2 rather than |δϕ|2 in which case,
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condition (1) is fulfilled and (2) is not. Similarly, we could conceive of an Ω
which is not simply a functional of the condensates alone — it depends on
other quantities as well — but at the end of the day, it is possible to write
a moduation-shape agnostic stability condition somehow.

The point is, however, that conditions (1) and (2) above might be fulfilled
by models of QCD, but neither of them applies to the underlying theory.
Thus, if one intends to perform a stability analysis of the homogeneous
ground state of dense quark–gluon matter, a new formalism is called for.

3. 2PI stability analysis

An equivalent analysis to the one outlined above goes as follows. Take a
2PI truncation of the effective action

Γ = Tr log
[
S−1

]
− Tr

[
1− S−1

0 S
]
+ Φ2PI[S] , (5)

where Φ2PI[S] is the sum of all 2PI diagrams. We find the Dyson–Schwinger
equations [13] by

δΓ

δS
= 0 ⇒ −S−1 + S−1

0 +
δΦ2PI

δS
= 0 ⇒ Σ =

δΦ2PI

δS
, (6)

where Σ = S−1 − S−1
0 . In direct analogy with the previous formalism, we

may propose that the propagator, rather than the condensates, be taken to
be a homogeneous contribution plus a small inhomogeneous perturbation.
Let the propagator be defined as

S (k1, k2) = S̄ (k1) δ (k1 − k2) + δS (k1, k2) , (7)

where S̄(k) is the solution to the homogeneous Dyson–Schwinger Equations.
Note that the first term contains a Dirac delta to ensure momentum con-
servation, as it is expected of the homogeneous case where translational
symmetry is unbroken. A one-to-one correspondent analysis to the one out-
lined above can be derived and, here as well, the zeroth order is trivially the
homogeneous effective action, the first order naturally vanishes by the gap
equation1

Γ (1) = Tr

[
δΓ

δS
δS

]
,

since at the stationary point we demand δΓ/δS to be zero as shown in
Eq. (6). The second order is the leading order and the starting point to

1 The overbar always indicates the quantity is evaluated at the homogeneous stationary
point.
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derive a stability condition is

Γ (2) =
1

2
Tr

[
S̄−1 (k1) δS (k1, k2) S̄

−1 (k2) δS (k2, k1)
]
+

1

2
Tr

[
δ2Φ

δSδS
δSδS

]
.

(8)
The expression above is in a way equivalent to the Ω(2)[ϕ] described in
the previous section. Since from the effective action we may calculate the
thermodynamic potential by

Ω(T, µ) = −T
V

(Γ (T, µ)− Γ (0, 0)) , (9)

we may use Γ (2) to try and write a stability condition.
However, it is certainly not this trivial. Not mentioning the more techni-

cal aspects — which are quite numerous — of calculating Γ (2), unfortunately,
it is not possible to write a stability condition for non-local interaction func-
tionals Φ such as in QCD. In the next subsection, we will discuss such issues
and talk some about how they may be circumvented. Lastly, we show that,
from the more 2PI Γ (2), we can recover the special case of Ω(2)

MF in NJL, thus
showing the method described here is more general.

3.1. Comments on the interaction contribution to Γ 2

Take a simple truncation of Φ2PI in QCD: a two-quark loop exchanging
a non-dynamical (as in not self-consistently solved within the theory) gluon
propagatorDab

µν(q) (this can be, for instance, the Maris–Tandy or Qin–Chang
models [14, 15]). We have

Tr

[
δ2Φ2PI

δSδS
δSδS

]
= Tr

[
γµt

aδS (k1, k2) γνt
bδS (k2 − q, k1 − q)Dab

µν(q)
]
.

It becomes clear that arriving at an expression like Eq. (4), where the in-
homogeneous perturbation appears as a mod-squared and whatever term
multiplies it can be taken as a stability condition, will not be possible due
to the fact that the momentum dependence in δS gets shifted by the gluon
momentum q.

We must conclude it is not possible to write a fully modulation shape
agnostic stability condition in QCD. However, more modestly, only partially
agnostic conditions can be derived. Take, for instance, the homogeneous
part of the propagator S̄(k1)δ(k1 − k2). In analogy to this, one thinks of
writing the following. Assume the inhomogeneous part of the propagator is
given by something like

S̄(k1)F (k1 − k2) ,



8-A12.6 T.F. Motta, M. Buballa, C.S. Fischer

where F can be any function and when we take the limit F (k) → δ(k), we
recover the homogeneous case. However, this fails to abide by a fundamental
property of the propagator, the adjoint relation

S
(
ω1, k⃗1, ω2, k⃗2

)†
= γ4S

(
−ω2, k⃗2,−ω1, k⃗1

)
γ4 .

The following ansatz, though, works

δS (k1, k2) =
(
S̄ (k1) + S̄ (k2)

)
F (k1 − k2) (10)

as long as F (−k) = F (k)†. This does conform to sufficient conditions to
derive a stability condition. The terms δS(k1, k2) and δS(k2− q, k1− q) will
contribute with factors of F (k1 − k2) and F (k2 − k1), respectively, which
combine to |F (k1 − k2)|2. Ansätze like these can yield stability conditions
and they do retain some agnosticism, namely, the shape of F . However,
suffice it to say, some ansatz had to be made.

3.2. The NJL case

We now show that the classic NJL result can be obtained from the 2PI
formalism. However, in order to recover the one-to-one correspondent ex-
pression to Eq. (4), we must first bridge the following gap. The “classic”
formalism shown above is based on an expansion of the condensates. Iden-
tically, since in the mean-field NJL, the self-energy is simply a linear combi-
nation of the condensates, we could see it as an expansion on the self-energy,
i.e. Σ = Σ̄ + δΣ. In order to connect one approach to the other, we can
write a Dyson series for the quark propagator

S = S̄ + S̄δΣS

and take both the self-energy and the propagator up to an inhomogeneous
order one and obtain the relation2

δS = S̄δΣS̄ .

Now, take for instance a scalar NJL interaction potential

Φ2PI = G

∫
x,y

δ(x− y) tr [S(x, x)]× tr [S(y, y)] , (11)

2 One might think expanding δS to a quadratic order in δΣ further terms would survive.
This is in fact possible, however, higher-order terms happen to cancel out in this NJL
calculation.
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and, for example, let us assume scalar fluctuations, i.e. that δΣ is also a
Dirac scalar (contributions from other NJL vertexes as well as non-scalar
fluctuations can be calculated by an analogous analysis). We then calculate
Γ (2) from Eq. (8) and obtain the following relation3:

Γ (2) =
1

2

∫
p,q

|δΣ(q)|2 tr
[
S̄(p)S̄(p− q)

]
+G

∫
p,k,q

|δΣ(q)|2 tr
[
S̄(p)S̄(p− q)

]
tr
[
S̄(k)S̄(k + q)

]

=
1

2

∫
p,q

|δΣ(q)|2

tr
[
S̄(p)S̄(p− q)

]
×

1 + 2G

∫
q

tr
[
S̄(k)S̄(k+q)

]
︸ ︷︷ ︸

D−1
S (q)

 ,

(12)
where the term in the inner parenthesis is the inverse scalar meson propa-
gator in the mean-field NJL (see Ref. [2]) and from Eq. (9), we can obtain
the theromodynamic potential contribution via Ω(2) = −T/V × Γ (2). We
have an extra contribution of tr[S̄(p)S̄(p− q)] compared with Eq. (4). How-
ever, not only do we verify numerically it is always negative, we can argue
that, if we take the interaction strength G to zero, this becomes the stability
condition for a free Fermi gas with respect to the formation of crystalline
condensates. Of course, the free Fermi gas is stable, thus, its Ω(2) is always
positive, i.e., its Γ (2) is always negative. Therefore, with the current anal-
ysis, we recover the same stability condition of Eq. (4): negativity of the
inverse meson propagator in mean-field NJL signifies an instability of the
homogeneous state with respect to the formation of small inhomogeneous
condensates.

4. Summary

As discussed in Introduction, the need for a final determination on
whether or not inhomogeneous phases exist in the QCD phase diagram is
pressing. In order to give such a statement, one needs to go beyond models
of QCD. The classic framework for stability analysis is not applicable to
theories where the interaction is non-local such as QCD. In fact, one would
not be able to use the old formalism even for the beyond mean-field NJL
and QM models.

3 Note that in the mean-field NJL the self-energy is local and thus we can take
δΣ(k1, k2) = δΣ(k1 − k2).
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We have developed a new basis for stability analysis which is valid for
any field theory and one can use progressively better truncations of the
Dyson–Schwinger Equations to approach the full QCD result.

T.F.M. acknowledges the support of the Alexander von Humboldt Foun-
dation, C.S.F. acknowledges the support of DFG grant FI 970/11-2.
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