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The Higgs decay H → gg(g) using an effective Higgs–Yang–Mills in-
teraction as well as usual QCD interactions is revisited in the context
of Implicit Regularization (IReg) and compared with conventional dimen-
sional regularization (CDR), four dimensional helicity (FDH), and dimen-
sional reduction (DRED) schemes, showing that no evanescent fields such as
ϵ-scalars need to be introduced. Unambiguous identification and separation
of UV from IR divergences is achieved and UV singularities are removed
as usual by renormalization. The IR divergences are cancelled due to the
method’s compliance with the Kinoshita–Lee–Nauenberg (KLN) theorem.
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1. Introduction

Regularization frameworks that operate partially or entirely in the phys-
ical dimension can bring simplifications in the evaluation of Feynman am-
plitudes, whereupon extensions such as DRED, FDH, and IReg, among oth-
ers [1] have been constructed as an alternative to conventional dimensional
regularization (CDR).
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The main goal of this work is the computation of the total decay rate of
the H → gg decay described by an effective model to NLO. Our objective
is twofold: (a) the renormalization of an effective non-Abelian field theory
with IReg; (b) the implementation of the KLN theorem [2] with a clear
separation of IR/UV scales.

2. UV/IR identification and UV renormalization in IReg

IReg is a regularization method that operates on the momentum space
and was shown to respect unitarity, locality, and Lorentz invariance [3]. The
main idea of IReg is to use an algebraic identity at the integrand level

1

(k − p)2 − µ2
=

1
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(k2 − µ2) ((k − p)2 − µ2)
(1)

recursively, until the UV divergent behavior is cast in irreducible loop inte-
grals that depend only on the internal momentum k denoted Basic Divergent
Integrals (BDIs). Here, µ is an IR regulator introduced in the massless prop-
agators in conformity with a normal form, which amounts to basic operations
such as shift invariance and numerator–denominator consistency being re-
spected in the process of regularization [4]. BDIs can take either logarithmic
or quadratic forms which are, respectively,
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Taking the limit in which the infrared regulator µ is set to zero, one
rewrites the BDIs in terms of a positive arbitrary constant λ which plays
the role of the renormalization group scale
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)
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i

(4π)2
. (3)

The Ilog(λ2) will be subtracted via renormalization, whereas the IR divergent
part ln(µ2) must ultimately cancel due to the KLN theorem.

3. NLO corrections to H → gg in the large top mass limit

The decay H → gg is mainly due to the top quark loop, so we take the
limit in which its mass is infinite. Thus, we add the following term to the
massless QCD Lagrangian [5, 6]:

Leff =
1

4
AHGa

µνG
a,µν , (4)
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where H is the Higgs boson field, Ga
µν is the field strength tensor of the SU(3)

gluon field. The effective coupling A = αs
3πv (1 + 11

4
αs
π ) can be obtained by

performing the matching of the full theory to its effective version [7–9]. The
strong coupling constant is denoted by αs = g2s

4π and v is the electroweak
vacuum expectation value, v2 = (GF

√
2 )−1 with GF the Fermi constant.

The Feynman rules can be straightforwardly obtained [6].

3.1. UV renormalization

We adopt multiplicative renormalization, rewriting the effective Lagra-
ngian as

(Leff)ren =
1

4
ZαsZAAHGµνG

µν , (5)

where ZA and Zαs are the renormalization constants for the gluon-field and
coupling constant respectively. By adopting the Feynman gauge, the coun-
terterm Vcount to be added to our process is

Vcount

V0
=

αs

bπ

[
CA

(
5

12
Ilog

(
µ2
)
− 11

12
Ilog

(
λ2
))

−TFNF

3

(
Ilog

(
λ2
)
−Ilog

(
µ2
))]

,

(6)
where V0 corresponds to the tree-level amplitude for H → gg.

3.2. Virtual decay rate

The virtual diagrams contributing to the one-loop order correction are
shown in Fig. 1. Momentum-energy conservation p1 + p2 + q = 0 and the
on-shell conditions p21 = p22 = 0 are applied throughout the calculations. We

Fig. 1. Virtual diagrams of the decay rate H −→ gg(g). From left to right they
are V1, V2, V3, V4, and V5. The dashed line represents the Higgs field, the curly
lines the gluon field. The external momenta are p1 and p2 for the gluons, q for the
Higgs.
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display only the result for the amplitude V1 as an illustration of the method,
see [10] for further details. Defining µ0 = µ2/m2

H , we obtain

V1 = Ag2CAδ
ab
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We retain terms up to O(α2
s ), add all the regularized amplitudes Vi with the

counterterm obtained in Eq. (6), and make use of the scale relation Eq. (3),
which leads to an UV finite result as expected
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Finally, the virtual decay rate is obtained from the sum of the tree-level
amplitude with the one-loop radiative correction
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,

(9)
where we choose the renormalization scale at the Higgs mass (λ2 = m2

H).

3.3. Real decay rate

The diagrams are shown in Fig. 2 (omitting external leg permutation
graphs). We use the spinor helicity formalism and refer to [10] for the
explicit evaluation. We obtain for the unpolarized total absolute squared
amplitude |M |2 = |Mg|2 + |Mq|2, where

|Mg|2 = A2παs8C
2
ACF

1

s12s13s23

(
s412 + s413 + s423 +m8

H

)
(10)

stands for the gluon emission contributions due to the R1, R2 diagrams, and

|Mq|2 = A2αs4πCFCA

((
s213 + s212

)
s23

+
4µ2

s223

(s13 + s12)
2

2

)
(11)

for the gluon and light quark pair emission diagram R3. Here, sij = (pi +
pj)

2 = 2pi · pj in the massless limit. The last term proportional to µ2 must
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Fig. 2. Real diagrams contributing up to αs
√
αs order to the decay H −→ ggg and

H −→ gqq̄. From left to right they are R1, R2 and R3.

be retained until the integration over the phase space is effected, before
taking the limit of vanishing quark masses [10]. The phase-space integral is
performed attributing the mass µ to the external particles (gluons and light
quarks). The integrals are evaluated using results collected in [1, 11]. The
real emission decay rate Γr(H −→ gg(g), gqq̄) is then
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=
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(12)
where Γ0 denotes the tree-level decay rate. The final total decay rate
ΓT(H −→ gg(g), gqq̄) is obtained summing Eqs. (9) and (12). In terms
of the renormalization scale λ2, which can be left as a free parameter until
the very end, log(λ

2

µ2 ) = log( λ2

m2
H
)− log(µ0), we get in conformity with [9]
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4. Comparison with dimensional schemes

When using DRED, the one-loop contribution due to light quarks can
only be consistently obtained when additional operators are taken into ac-
count. As we have shown in the previous section, in the case of IReg, the
inclusion of ϵ-scalars (or additional operators) is not necessary. Following
[12, 13], the virtual contribution to the following decay rates to O(ϵ) is [10]:
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Comparing to Eq. (9), the correspondence ϵ−1 → logµ0, ϵ−2 → log2 µ0/2
applies as first noticed in [1]. The result in CDR does not have any finite term
(apart from factors of π2 that will be cancelled against the real contribution).
The same holds true for IReg. For FDH and DRED, on the other hand, there
is the appearance of finite terms proportional to CA and NF .

Regarding the real contributions, the part proportional to NF can be
readily obtained [10]. For CDR and FDH, only the diagram on the right of
Fig. 2 contributes. In DRED, additional operators contribute due to vector
boson splitting. The respective decay rates up to O(ϵ) are

ΓCDR/FDH
q,r = Γ0

αs

π

[
− 1

3ϵ
− 7

6

]
NF , ΓDRED

q,r = Γ0
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[
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3ϵ
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3

]
NF .

(17)
The result of IReg, Eq. (11), is similar to CDR/FDH in the sense that

there is an extra term. In the latter, it comes from extending the physical
dimension to d, while in IReg, it is encoded in the fictitious mass that we
have added for the massless particles.

5. Conclusion

The decay rate ΓT(H −→ gg(g), gqq̄) at α3
s order in the strong coupling

has been computed in the framework of the fully quadri-dimensional regular-
ization scheme IReg and compared to the dimensional schemes CDR, FDH,
and DRED. We achieved not only a full separation of BDI from the UV
finite integrals but singled out the IR content as well. By comparing with
different dimensional schemes, one concludes that IReg does not require the
use of evanescent fields at the one-loop level.
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