Acta Physica Polonica B Proceedings Supplement 16, 8-A2 (2023)

CMS ZDC DATA MONITORING FOR RUN 3*

AIVARAS SILALE, MANTAS STANKEVICIUS, VALDAS RAPSEVICIUS

Vilnius University, Lithuania

CoLE DoucLAs LE MAHIEU, SORINA POPESCU, MICHAEL MURRAY

University of Kansas, USA

Received 2 February 2023, accepted 23 September 2023,
published online 27 October 2023

The CMS Zero Degree Calorimeters (ZDCs) are used to measure very
forward and backward neutrons and photons from heavy-ion (and possibly
pp) collisions at the LHC. Their purpose is to characterize the geometry of
heavy-ion, photon—nucleus, and photon—photon collisions. The ZDCs are
built from layers of tungsten and quartz fiber, and detect Cerenkov light
produced by the showers of particles generated from incoming neutrons
and photons. They will serve as a basic minimum bias trigger for 2022
PbPb run. To operate the ZDCs efficiently, it is vital to have a compre-
hensive monitoring system. This paper will present design considerations
and results of prototype testing of the new ZDC monitoring system. This
system operates within the framework of the CMS Online Monitoring Sys-
tem (OMS). A dedicated workspace for the ZDC allows for the organizing
of monitored metrics in folders and pages. The most important metrics are
energy distributions, the shower shape profile, and the single neutron peak.
At a lower level charge and time distributions for individual channels are
available. CMS OMS supports correlation of multiple data sources which
allows for monitoring of rate per layer of ZDC average flux versus luminos-
ity. Different pages give access to the current status of the detector as well
as access to historical data.

DOI:10.5506 / APhysPolBSupp.16.8-A2

1. ZDC

The two Zero Degree Calorimeters (ZDCs) [2]| of the CMS experiment
are located at £140 m from the collision point and measure very forward and
backward neutrons and photons. The ZDCs complement the main CMS de-
tector especially for heavy-ion studies. They reside in special detector slots

* Presented at Ezcited QCD 2022, Sicily, Italy, 23-29 October, 2022.

(8-A2.1)

https://www.actaphys.uj.edu.pl/findarticle?series=sup&vol=16&aid=8-A2

8-A2.2 A. SILALE ET AL.

in the neutral particle absorber (TAN), which protects the first supercon-
ducting quadrupole magnet from radiation. The detector is built from layers
of tungsten and quartz fibers. Data is digitized via the QIE electronics.

] PMTs 7 o]

\

Light guides

0

Fig. 1. The schematic side-view of the CMS ZDC.

2. Data preparation

Data collected by ZDC are stored in ROOT files in the EOS files system.
In order to make it available via browser, data must be located, extracted,
and transformed into a suitable format for loading into the Oracle database.
Data extraction from ROQOT files is a challenging task as different graph
types (1D/2D) store data in a different format. Data is enriched with meta-
data which consists of 4 fields, see Table 1.

Table 1. Description of metadata.

Field Definition
Name Name of the graph

Local run number Number of a test run in the lab
Fiber ID of a fiber connected to the board

Channel ID of a channel of a board

CMS ZDC Data Monitoring for Run 3 8-A2.3

We use Python3 script to create the ETL pipelines, for extracting data
from ROOT files we use the Uproot library [1]. Uproot is a library for
reading and writing ROOT files in pure Python and NumPy. Uproot does
not depend on C++ ROOQOT. Instead, it uses NumPy to cast blocks of data
from the ROOT file as NumPy arrays.

Data is transformed and loaded into the Oracle database provided by
the CERN services. Each graph has its own table:

ZDC_ALL_SUM_CHARGE [see Fig. 2], ZDC_AC_PER_CHANNEL, ZDC_CAP_ID_PLOT,
ZDC_MAX_CHARGE, ZDC_QIE10ETAPHISPACE

{ COLUMN_NAME |i} DATA_TYPE i NULLABLE |DATA_DEFAU|_T |>j} COLUMN_ID |>j} COMMENTS |
1 PLOT_ID NUMBER No (null) 1 (null)
2 NAME VARCHARZ2(255 BYTE) No (null) 2 (null)
3 FIBER NUMBER No (null) 3 (null)
4 CHANNEL NUMBER No (null) 4 (null)
5 DATA_ARRAY CLOB Yes (null) S (null)
6 LOCAL_RUN_NUMBER NUMBER Yes (null) 6 (null)

Fig.2. ZDC_ALL_SUM_CHARGE table schema.

3. API
3.1. AGG API

The CMS OMS is divided into two layers — aggregation and presenta-
tion. RESTful JSON:API is responsible for communication between layers.
The aggregation layer is responsible for collecting data from various sources,
storage of transformed and pre-calculated (aggregated) values, and exposure
of data via the RESTful API. Aggregation API was written using the JAVA
programming language. Each subsystem which uses OMS has to use Virtual
Machine (VM) in the CERN OpenStack.

3.2. ZDC' endpoints

For development, the ZDC group has a dedicated VM in the CERN
OpenStack project for aggregation API (AGG API for short). The OMS
Core team provided a GitLab repository for us with all instructions. We
had to pull the code and start to create endpoints. In order to create an
endpoint, a user has to upload a JSON file for the DB table, which he would
like to expose. After that, a user has to run Python3 script to create a
boilerplate for endpoints. At this moment, ZDC has 6 endpoints which we
use to filter and display the data, see Table 2.

8-A2.4 A. SILALE ET AL.

Table 2. List of endpoints.

Endpoint name URL
ADC per Channel /zdc-agg/api/v1/zdc/adcperchannel

All Sums Charges /zdc-agg/api/vl/zdc/allsumcharges

Cap Ids /zdc-agg/api/v1l/zdc/capids

Local Runs /zdc-agg/api/vl/zdc/localruns

Max Charge /zdc-agg/api/v1l/zdc/maxcharge

Eta phi space /zdc-agg/api/vl/zdc/qielOetaphispace
4. GUI

To operate the ZDCs efficiently, it is vital to have a comprehensive mon-
itoring system. OMS is a web-based application to display data from various
sources.

4.1. OMS

OMS — Online Monitoring System is a web-based Monitoring System,
which is a main tool used to display data from various sources (real-time
as well as historical data). OMS is used by many groups such as GEM,
HGCAL, CTTPS, PPS, ECAL, etc. These groups have their own dedicated
workspaces, where they can create many folders inside which users are al-
lowed to create pages containing data tables, different types of charts such as
Highcharts, Error Bar, HeatMap, Map, Pie Chart, etc. OMS is user-friendly
and most of the work can be done with only the “drag and drop” action using
the web interface. Originally, OMS was created with Python and React.

4.2. ZDC workspace

During our work with OMS, we have created 5 different types of charts:
Linear chart, HeatMap, Error Bar, Scatter, and Histogram. Linear chart and
Histogram were created only by using configuration, without programming
effort. In order to create that kind of charts, we had to use generic charts
which were created before. In order to create a chart from a generic template,
we had to write a specific configuration which is shown below, see Fig. 3.

The other 3 types were created by coding. The HeatMap, Scatter, and
Error Bar charts were created as a template. That allows all the OMS users
to use these templates without writing any line of code, by only editing
portlet configuration. An example of HeatMap which indicates the correct
fiber every time data are received and number of ADC counts per channels
is shown in Fig. 4.

CMS ZDC Data Monitoring for Run 3 8-A2.5

Portlet Configuration For This Page (64000/663)

1-|{ -
2 "aggpath": "/zdc-agg",

3 "endpoint": "zdc/capids”,

4~ "filters": [

5~ {

6 "attribute”: "plot_id",

7 "operator™: "EQ",

8 "value": 1234

9 T

18 1,

11- "highcharts": {

12 "chart": {1,

13- "colorAxis": {

14 "maxColor™: "yellow",

15 "min": @,

16 "minColor": "#FFFFFF"

17 ,

18 - "plotOptions™: {

19 - "histogram™: {

20 - "accessibility": {

21~ "point": {

22 "valueDescriptionFormat”: "{index}. {point.x:.3f}
23

24 1 v
25 »

Fig. 3. Portlet (Chart) configuration example.

CAP IDs 3 At

10000 10000

10000

ADC per channel

160k

N
m >~

N e i

ADC Counts

Fig.4. Top: Reading the correct fiber every time data are received. Bottom: ADC
count per channel.

8-A2.6 A. SILALE ET AL.

5. Summary

The main goal of this project is to show how ZDC can leverage the CMS
OMS framework to display data in an efficient and user-friendly way. We
have created an ETL pipeline to extract data from the source systems, store
it in an Oracle database, and create an aggregation API to expose the data.
We have also created front-end assets using the CMS OMS framework to
display the data in a visually-pleasing way. Our proof of concept is now
ready for testing and integration.

REFERENCES

[1] J. Pivarski et al., Uproot, September, 2017.
[2] O. Suranyi et al., J. Instrum. 16, P05008 (2021).

http://dx.doi.org/10.1088/1748-0221/16/05/P05008

	1 ZDC
	2 Data preparation
	3 API
	3.1 AGG API
	3.2 ZDC endpoints

	4 GUI
	4.1 OMS
	4.2 ZDC workspace

	5 Summary

