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It is clear that the leading order perturbative QCD prediction is in-
compatible with the electromagnetic pion form factor at the energies which
have so far been probed experimentally. As such, it is necessary to con-
sider non-perturbative effects in its treatment. In this contribution, we
consider various non-perturbative effects, in particular the Reggeization of
the quark, and consider how their implementation affects the high-energy
behavior of the pion form factor.
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1. Introduction

Leading order perturbative QCD (PQCD) predictions of the pion form
factor are expected to describe the data well for sufficiently high energies
due to the running of the strong coupling constant. However, data at such
energies does not yet exist, and the PQCD predictions for the data that do
exist are seen to be off by as much as a factor of three [1–3]. It is, therefore,
evident that models which attempt to describe existing data must include
non-perturbative effects.

In this work we model the EM pion form factor by the γ → qq̄ → ππ
processes as shown in Fig. 1, and explore the behavior that comes from
Reggeizing the exchanged quark. This model is motivated experimentally
by the work of [4], in which it was observed that hadronic cross sections
involving the exchange of a valence quark are larger than hadronic cross
sections in which the valence quark exchange is not possible. This model
has theoretical motivation as well. In the high-energy limit, we expect the
momentum carried by the exchanged particle to be small, and hence the
propagator will be largest when the mass of the exchanged particle is small
(i.e. when the exchanged particle is a quark).
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Fig. 1. Feynman diagram representing the γ → qq̄ → ππ process with the qq̄ → ππ

mediated by the exchange of a quark.

We start by considering the high-energy behavior of this model consisting
of all scalar particles in the completely perturbative case. This will serve
as a baseline for comparison of all subsequent calculations. After this, we
modify the perturbative picture with non-perturbative effects which modify
the propagator terms, gluon exchange at the pion vertices, and finally, by
Reggeizing the exchanged quark. We then repeat the calculation with the
quarks promoted to spinors and the photon promoted to a vector.

2. Form factor at high energies

We start by considering this model completely perturbatively with all
of the particles treated as scalars. In this scenario, the amplitude can be
written straightforwardly using the Feynman rules from the gϕ3 interaction
term

F (s) =
g3

i

∫
d4k

(2π)4
1(

(k + p2)
2 −m2

q

)(
(k − p3)

2 −m2
q

)
(k2 − µ2)

, (1)

where p2 and p3 are the momenta of the outgoing pions, k is the momentum
of the exchanged scalar quark, mq is the mass of the quarks in the qq̄ pair,
and µ is the mass of the exchanged quark. It is most convenient to carry out
this calculation using a dispersion relation. To calculate the discontinuity,
we put the qq̄ pair on shell according to Cutkosky’s cutting rules, so that

∆F (s) =
g3

i

∫
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(2π)4
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. (2)

The delta functions can be rewritten as functions of k0 and |⃗k|. This allows us
to perform two of the four integrals. Furthermore, there is no azimuthal an-
gle dependence, so the azimuthal angle integration can be easily performed.
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The result
(
using s = (p2 + p3)
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√
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)
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g3σq
8π

1∫
−1
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(
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q − µ2

) . (3)

Noting that in the limit of large s we have σi → 1, it is clear that
the discontinuity is dominated by the region z ≃ 1. This corresponds to
forward scattering and indicates that the transverse quark carries very little
momentum.

Integrating Eq. (3) over z in a dispersion relation, we see that

F (s) =
1

π

∫
ds′

∆F (s′)

s′ − s
=

1

π

∫
ds′

ln s′

s′

s′ − s
. (4)

The denominator can be expanded, and to leading order (s′−s)−1 ≃ s−1.
Therefore, the only s′ dependence comes from ∆F (s′). The remaining inte-
gral is dominated by the region of integration s′ ∼ s, and so the result at
large s is

F (s) ∝ ln2 s

s
. (5)

This serves as a point of comparison for all subsequent calculations. The
introduction of non-perturbative physics will add additional spatial depen-
dence to the couplings. Thus, we should expect that, particularly for in-
teractions at high energies, the behavior of the form factor should become
softer relative to the perturbative calculation of Eq. (5).

The first modification we make is

g → g(
p2 −m2

q

)n−1 , (6)

where p is the momentum of the quark in the qq̄ pair connected to the pion
vertex. Such a change can be interpreted as some change to the propagator
from higher-order diagrams in a way analogous to a self energy, or as a
change to the qq̄π coupling. With this modification, the amplitude Eq. (1)
picks up n− 1 factors of the propagators for the qq̄ pair

F (s) =
g3

i

∫
d4k

(2π)4
1(

(k + p2)
2 −m2

q

)n(
(k − p3)

2 −m2
q

)n
(k2 − µ2)

. (7)

In this case, it is straightforward to proceed using the Feynman param-
eters. In the large-s limit, one can show both analytically and numerically
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that the leading s behavior changes as a function of n, F (s) ∼ s−n for n > 1.
This behavior is shown in Fig. 2. It is, therefore, possible to systematically
modify the overall s dependence of the EM form factor at high energies by
raising the power of the quark and antiquark pair momentum dependence.
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Fig. 2. Result of numerical integration of Eq. (7) as a function of s for several
values of n.

We can consider modifying the behavior of the exchanged quark prop-
agator in a similar manner. However, based on Eq. (3), we know that the
exchanged quark carries very little of the total momentum, and therefore we
do not expect it to depend strongly on s. Indeed, one can show analytically
and numerically that raising the transverse quark propagator to an arbitrary,
positive power does not affect the overall s behavior at high energies.

The formation of pions from two quarks requires the exchange of gluons.
Therefore, we need to study the effects of adding gluon exchange at the
pion vertices. Figure 3 shows a single gluon exchange at one of the pion
vertices. Rather than calculate a two-loop diagram, we simply calculate the
contribution from the gluon loop, and then determine if this contribution
changes the dependence of the remaining loop on the quark and antiquark
pair momentum. From this, much as we did for the previous case where we
modified the propagator term, we can determine if the overall s behavior of
the form factor changes.
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Fig. 3. Single-gluon exchange at the quark–pion vertex.

Assuming Eq. (6), the contribution of the gluon loop is

Fg

(
p22, s

)
=

∫
d4ℓ

(2π)4
1

ℓ2
(
(p1 + k)2 −m2

q

)n (
(k + ℓ)2 −m2

q

) , (8)

where p1 = k+ p2. Investigation of this term leads to the discovery that Fg

is suppressed at most by a factor of 1
p21

regardless of the value of n, as is seen
in Fig. 4. Comparing this to the previous analysis of Eq. (7), we see that by

103 104 105 106

p2
1 (GeV2)

10 2

10 1

100

ln2p2
1

p2
1

n = 1

103 104 105 106

p2
1 (GeV2)

10 3

10 2

10 1

100
1
p2

1

n = 2

103 104 105 106

p2
1 (GeV2)

10 3

10 2

10 1

100
1
p2

1

n = 3

103 104 105 106

p2
1 (GeV2)

10 3

10 2

10 1

100
1
p2

1

n = 4

Single Gluon Exchange

Fig. 4. Result of numerical integration of Eq. (8) as a function of s for several
values of n.
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adding gluons the form factor can be made as soft as 1
s , but no softer. This

effectively means that diagrams involving the gluon exchange shield the s
dependence of the form factor from the non-perturbative modifications which
appear within the gluon loop.

In reality, the photon is a spin-one particle and the quarks have a spin
of 1/2. This will make the calculations more cumbersome by introducing
Dirac matrices in the numerator of each propagator and in the couplings.
However, despite the complications, the calculations are handled in much
the same way, and the behavior in the limit of large s of the form factor is
unchanged.

3. Quark Regge trajectory

In this contribution, we only consider the scalar quark Regge trajectory.
However, it is possible to construct a Regge trajectory for a spinor particle
by considering a ladder of spinor–vector interactions mediated by the quark
exchange in the u-channel as was described by [5]. We model the scalar
Regge trajectory by first considering a Reggeon A(s) in the s-channel which
is constructed by the sum of all ladder diagrams as shown in Fig. 5 [6].

Fig. 5. Diagrammatic representation of our model for the quark Reggeon, which is
constructed by summing over ladder diagrams Aℓ = A1

ℓ +A2
ℓ + . . .

The first contribution to the ℓth partial wave of the amplitude Aℓ is

A1
ℓ (s) =

∫
dzs

g20
λ2 − u(s, zs)

Pℓ(zs) , (9)

where λ is the mass of the exchanged scalar particle, g0 is the coupling
constant at the vertices, zs is the cosine of the scattering angle in the
s-channel, and Pℓ(z) are Legendre polynomials. We calculate higher-order
contributions to the partial wave amplitude by unitarity, i.e.

A2
ℓ (s) =

1

π

∫
ds′

A1
ℓ (s

′) ρ (s′)A1
ℓ (s

′)

s′ − s
, (10)

where ρ(s) = λ1/2(s,m2,m2)
16πs , m is the mass of the external particles, and

λ(a, b, c) is the Källén function. Defining Nℓ(s) = g20(ℓ + 1)A1
ℓ (s) and
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Dℓ(s) = −1 +
sg20
π

∫
ds′

s′(s′−s)Nℓ(s
′)ρ(s′), we write

Aℓ(s) =
g20Nℓ(s)

ℓ−Dℓ(s)
. (11)

The factor of (ℓ + 1) was introduced in order to regularize the pole which
is present in Eq. (9) at ℓ = −1. It is clear that Eq. (11) has the form of a
simple Regge pole where

Aℓ(s) =
β(s)

ℓ− α(s)
, α(s) = Dα(s)(s) , β(s) = g0(s)

2 Nα(s)(s)

1−Dα(s)(s)
. (12)

Unitarity gives the imaginary part of the trajectory Imα(s) = ρ(s)β(s)
above the production threshold, and we therefore require that β(s) is real
above the threshold. This is not automatically satisfied by Eq. (12), but can
be corrected by making the change

g0(s)
2

1−Dα(s)(s)
→ c e

− s
π

∫∞
s
th

ds′ ϕ(s)

s′(s′−s) , (13)

where ϕ(s) is the phase of Nℓ(s) when represented in polar coordinates. This
allows us to write a set of integral equations for the Regge trajectory as a
once subtracted dispersion relation in terms of ν = s

4m2 − 1 and r = λ2

2m2

Nα(ν)(ν) =

√
π
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∞∑
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(
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,
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(
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)
,

β(ν) = c να(ν) exp

iϕ(ν)− ν+1

π

∞∫
0

dν ′
Imα(ν ′) ln ν ′+ϕ(ν ′)

(ν ′+1)(ν ′−ν)

|Nα(ν)(ν)| ,

Imα(ν) = ρ(ν)β(ν) ,

Reα(ν) = a+
ν + 1

π

∞∫
0

dν ′
ρ(ν ′)β(ν ′)

(ν ′ + 1)(ν ′ − ν)
. (14)

This set of equations can be solved iteratively and depend on the parameters
a, c, and r. As an example, Fig. 6 shows iteration over for the parameters
a = −0.1, c = 1, and r = 2.
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Fig. 6. Imaginary (top panel) and real (bottom panel) parts of the Regge trajectory
of a scalar particle produced using Eq. (14) with r = 1 and c = 10. The parameter
a is fixed such that Reα(ν) → −1 as ν → −∞.

The leading order behavior of the sum of ladder diagrams of Fig. 5 near
the pole ℓ = α(s) is A(s, u) ∼ uα(s). This can be used in the context of our
model for the pion form factor by substituting Aℓ for the qq̄ → ππ portion
of the diagram, so that for large s, including all non-perturbative effects
considered so far

F (s) =
g3

i

∫
d4k

(2π)4
sα(u)(

(k + p2)
2 −m2

q

)n (
(k − p3)

2 −m2
q

)n . (15)

By varying a and c of (14), this gives us further control over the s dependence
of the pion form factor. By comparing an expression like Eq. (15) but with
particles of correct spin to data, one can extract values for n, a, and c, and
determine what this implies about the nature of QCD.

4. Summary and outlook

In this work, we have determined a method for systematically alter-
ing the high-energy behavior of the EM pion form factor by introducing
non-perturbative interactions. This is achieved through modifying the pion
interaction vertex and introducing a Regge pole for the exchanged quark.
This will allow the pion form factor some flexibility in describing the data,
and will hopefully yield some insight into the nature of QCD.
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What still needs to be done is to construct a Regge trajectory for the
quark in which the quantum numbers of the Regge trajectory are those
of a quark, i.e. a spinor particle. Once this is accomplished, a meaningful
comparison to data can be done, and the parameters of the Regge trajectory
and the non-perturbative pion vertex can be extracted.
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