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In this contribution, we illustrate the applicability of a new parame-
terization of the S-wave amplitude on the example of the ππ → ππ and
πK → πK lattice data (mπ ∼ 240 MeV) from the HadSpec Collabora-
tion. The applied parameterization follows from the dispersive representa-
tion for the inverse scattering amplitude. The left-hand cut contribution
is parametrized by the series in a suitably constructed conformal variable.
The crucial input in the analysis is the Adler zero, whose position we ex-
tracted from the chiral perturbation theory at next-to-leading order with
the uncertainties propagated from the low-energy constants.
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In recent years there has been significant progress in lattice QCD studies
of excited hadrons [1]. These studies have great potential for determining
the properties of poorly known hadronic states. Proper identification of res-
onance parameters, however, requires the search of the S-matrix poles in
the complex plane. Currently, very simplistic parameterizations are used
in the fits, which in some cases lead to the very wide spread of the de-
termined resonance parameters (see e.g. [2]) or even fail to find a stable
solution [3]. The application of Roy-like analyses to lattice data is very diffi-
cult and only possible in very few cases. The approach which is based on the
partial-wave dispersion relation for the direct amplitude [4] requires an ex-
tra computational cost due to numerical matrix inversion, thus complicating
its implementation in fits to lattice data. The parameterization, which was
proposed in [5], is based on writing the dispersion relation for the inverse
amplitude. In general, it does not give a superior representation compared
to the direct representation suggested in [4]. However, the advantage is its
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compact analytical form which is more suitable for direct numerical imple-
mentations and superior to the simple K-matrix forms, which are currently
used in lattice analyses. In the case of zero-angular momentum scattering,
it has the following form [5]:
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with an arbitrary choice of the subtraction point sL < s̃M < sth. The
integral over the right-hand cut is fixed from the unitarity condition and
denoted by R(s, s̃M )
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The Adler zero of the scattering amplitude is accounted for by the corre-
sponding pole of the inverse scattering amplitude with the residue gA. The
contribution from the left-hand cut combined with the subtraction constant
is expanded in the conformal mapping series. The variable ω(s),
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(4)

maps the entire complex plane, except for the left-hand cut, into the unit
circle. The expansion point sE is in general a free parameter, but in practice,
it should be adjusted to maximize the convergence of the conformal series
near the pole in the complex plane.

The proposed parameterization enables the accurate description of reso-
nances through the use of only a few terms in a conformal mapping series.
It was explicitly demonstrated in [5] on the well-known examples of ππ and
πK scattering for the physical pion mass. However, to achieve an accurate
result, the parameterization necessitates an input for the Adler zero. Given
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that the Adler zero resides within the domain of convergence of chiral per-
turbation theory (χPT), the position of the zero for the physical pion mass
can be efficiently determined through the use of χPT without encountering
any difficulties. The question arises for the pion mass beyond its physical
value when the convergence of the χPT series becomes worse.

The behavior of the Adler zero, given by χPT at LO and NLO, with
the pion mass in the range from its physical value up to 300 MeV is shown
in Fig. 1. The error bands are estimated by propagating the uncertainties
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Fig. 1. (Color online) The positions of the Adler zero, predicted by LO and NLO
χPT, with respect to the pion mass. For I = 1/2, 3/2, we fixed the strange-quark
mass effectively via the LO χPT meson mass relations with mπ = 239 MeV and
mK = 508 MeV taken from [3]. The gray bands illustrate the 1σ uncertainty
propagated from the LECs using the bootstrap technique. The black curves cor-
respond to the central values of LECs. Top panel: I = 0, 2 from SU(2) χPT with
LECs from [6]. Bottom panel: I = 1/2, 3/2 from SU(3) χPT with LECs (“p4”-fit)
from [6]. The blue dot-dashed line shows the closest left-hand cut branch point.
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from the low-energy constants1 (LECs) of the theory, assuming that they
are uncorrelated. The SU(2) χPT amplitudes for ππ scattering are taken
from [7] with the LECs from [6]. One possibility is to express the partial-wave
amplitude in terms of the pion decay constant in the chiral limit f0, which
does not depend on the pion mass. This approach has been performed in [5].
Here, we would like to follow the alternative strategy and expand the χPT
amplitudes in terms of the physical pion decay constant fπ. The pion mass
dependence of the latter is fixed by its NLO perturbative expansion. The
same approach we apply for the case of πK scattering. The corresponding
SU(3) χPT amplitudes are taken from [8], with the LECs from “p4”-fit [6].
The strategy described above effectively resumes some of the higher-order
χPT corrections and enhances the χPT convergence. It results in reduced
uncertainties of the Adler zero positions and improves the behavior of the
πK partial-wave amplitudes with the isospin I = 3/2 for the large pion
masses.

For the description of the lattice data from [2, 3], it is enough to stay
with the leading term in the conformal mapping expansion

[t0(s)]
−1 ≈ C0 +R(s, sth) +

s− sth
sA − sth

gA
s− sA

, (5)

where we have chosen s̃M = sth. The two fit parameters are gA and C0.
The pole positions deduced from the simple fits to p cot δ lattice data are
shown in Fig. 2 and Table 1. The mean values and their uncertainties in
the full bootstrap were obtained through a combination of bootstrapping
the lattice data and the Adler zero input. The mean values of the Adler
zero bootstrap, along with their uncertainties, were derived by fixing the
lattice data and only bootstrapping the Adler zero input. It is evident
that the main source of uncertainty in the pole parameters arises from the
uncertainties associated with the lattice data points rather than from the
chiral input of the Adler zero position. Comparing the fitted amplitudes
with the χPT results (see right panel of Fig. 2), one can deduce that the
existing lattice data on ππ scattering cannot provide a constraint on the
LECs. However, the amplitudes fitted to the lattice data on πK scattering
lie within the χPT uncertainty bands, thus they could already constrain
some of the SU(3) LECs.

The main result of this work is the stable extraction of the σ and κ
poles from the lattice data [2, 3] through the utilization of the dispersive
inverse amplitude (DIA) parameterization (Eqs. (1) and (5)). The Adler
zero input with uncertainties was obtained from the extrapolated NLO χPT

1 We use those LECs that do not depend on meson masses, but on the regularization
scale. Hence they are treated as fixed parameters in chiral extrapolation.
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amplitudes and given in Fig. 1. We conclude that DIA parameterization is
well-suited for the future implementations of the upcoming lattice data (see
e.g. [9, 10]).

Table 1. The parameters of σ and κ poles, which correspond to the left panel of
Fig. 2.
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Fig. 2. (Color online) Left panel: the σ and κ poles (mπ ∼ 240MeV) are shown with
their 1σ uncertainties. The full bootstrap mean value (black point), its uncertainty
(black line), and bootstrap points (gray points) are given. The mean value of
the Adler zero bootstrap (red point), the corresponding uncertainties (red line),
and the bootstrap points (white points) are also shown. The central value (blue
point) corresponds to the pure fit without an error analysis. Right panel: The
dispersive inverse amplitudes (DIA) from the fit to the lattice data (blue bands)
[2, 3] compared to the extrapolated NLO χPT results (gray bands).



8-A6.6 V. Biloshytskyi et al.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), in part through the Research Unit [Photon–
photon interactions in the Standard Model and beyond, Projektnummer
458854507-FOR 5327], and in part through the Cluster of Excellence [Preci-
sion Physics, Fundamental Interactions, and Structure of Matter] (PRISMA+

EXC 2118/1) within the German Excellence Strategy (Project ID 39083149).

REFERENCES

[1] R.A. Briceno, J.J. Dudek, R.D. Young, Rev. Mod. Phys. 90, 025001 (2018);
M.R. Shepherd, J.J. Dudek, R.E. Mitchell, Nature 534, 487 (2016).

[2] R.A. Briceno, J.J. Dudek, R.G. Edwards, D.J. Wilson, Phys. Rev. Lett. 118,
022002 (2017).

[3] D.J. Wilson et al., Phys. Rev. Lett. 123, 042002 (2019).
[4] I. Danilkin, O. Deineka, M. Vanderhaeghen, Phys. Rev. D 103, 114023

(2021); O. Deineka, I. Danilkin, M. Vanderhaeghen,
arXiv:2203.02215 [hep-ph].

[5] I. Danilkin, V. Biloshytskyi, X.-L. Ren, M. Vanderhaeghen, Phys. Rev. D
107, 074021 (2023), arXiv:2206.15223 [hep-ph].

[6] J. Bijnens, G. Ecker, Annu. Rev. Nucl. Part. Sci. 64, 149 (2014).
[7] M. Niehus, M. Hoferichter, B. Kubis, J. Ruiz de Elvira, Phys. Rev. Lett. 126,

102002 (2021).
[8] A. Gomez Nicola, J.R. Pelaez, Phys. Rev. D 65, 054009 (2002).
[9] D. Mohler, talk presented at the Bethe Forum Multihadron dynamics in a

box, Bethe Center for Theoretical Physics, Bonn, Germany, 9–13 September,
2019, https:
//indico.hiskp.uni-bonn.de/event/2/attachments/26/64/Mohler.pdf

[10] A. Rodas, talk presented at the 39th Lattice conference, Bonn, Germany,
8–13 August, 2022, https://indico.hiskp.uni-bonn.de/event/40/
contributions/709/attachments/573/992/AR_Lattice_2022.pdf

http://dx.doi.org/10.1103/RevModPhys.90.025001
http://dx.doi.org/10.1038/nature18011
http://dx.doi.org/10.1103/PhysRevLett.118.022002
http://dx.doi.org/10.1103/PhysRevLett.118.022002
http://dx.doi.org/10.1103/PhysRevLett.123.042002
http://dx.doi.org/10.1103/PhysRevD.103.114023
http://dx.doi.org/10.1103/PhysRevD.103.114023
http://arxiv.org/abs/2203.02215
http://dx.doi.org/10.1103/PhysRevD.107.074021
http://dx.doi.org/10.1103/PhysRevD.107.074021
http://arxiv.org/abs/2206.15223
http://dx.doi.org/10.1146/annurev-nucl-102313-025528
http://dx.doi.org/10.1103/PhysRevLett.126.102002
http://dx.doi.org/10.1103/PhysRevLett.126.102002
http://dx.doi.org/10.1103/PhysRevD.65.054009
https://indico.hiskp.uni-bonn.de/event/2/attachments/26/64/Mohler.pdf
https://indico.hiskp.uni-bonn.de/event/2/attachments/26/64/Mohler.pdf
https://indico.hiskp.uni-bonn.de/event/40/contributions/709/attachments/573/992/AR_Lattice_2022.pdf
https://indico.hiskp.uni-bonn.de/event/40/contributions/709/attachments/573/992/AR_Lattice_2022.pdf

