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We consider a simple set of equations that govern the expansion of
boost-invariant plasmas of massless particles. These equations describe
the transition from a collisionless regime at early time to hydrodynam-
ics at late time. Their mathematical structure encompasses all versions
of second-order hydrodynamics. We emphasize that the apparent success
of the Israel–Stewart hydrodynamics at early time has little to do with
“hydrodynamics” proper, but rather with a particular feature of the Israel–
Stewart equations that allows them to effectively mimic the collisionless
regime.
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In this note, we consider an idealization of the early stages of a high-
energy heavy-ion collision, where the produced matter expands longitudi-
nally along the collision axis in a boost-invariant fashion, undergoing the
so-called Bjorken expansion [1]. The matter is supposed to occupy uni-
formly the plane transverse to the collision axis (the z-axis). The discussion
will be based on the simple kinetic equation [2][

∂τ −
pz
τ
∂pz

]
f(p, τ) = −f(p, τ)− feq(p/T )

τR
, (1)

where f denotes a distribution function for massless particles, and C[f ] is a
collision term treated in the relaxation time approximation (feq(p/T ) is the
local equilibrium distribution function).

In the case of massless particles, the energy-momentum tensor has two in-
dependent components, which can be identified with the energy density ε and
the difference between the longitudinal and transverse pressures PL − PT.
These two quantities are special moments of the distribution function, ε=L0

and PL − PT = L1, where for any integer n, we define [3]
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Ln ≡
∫

d3p

(2π)3
p2P2n

(
pz
p

)
fp(t,x,p) , (2)

with Pn(x) a Legendre polynomial and p = |p| 1. Owing to the symmetries
of the Bjorken expansion, the moments Ln depend only on the proper time
τ =

√
t2 − z2. They obey the coupled equations [4]

∂L0

∂τ
=− 1

τ
(a0L0 + c0L1) , (3a)

∂L1

∂τ
=− 1

τ
(a1L1 + b1L0 + c1L2)−

L1

τR
. (3b)

The coefficients, a0 = 4/3, a1 = 38/21, etc., are pure numbers whose values
are fixed by the geometry of the expansion. The last term in Eq. (3b),
proportional to the collision rate 1/τR, isolates in a transparent way the
effect of the collisions. Without this term, Eqs. (3) describe free streaming.
In this regime, the moments evolve as power laws governed by the eigenvalues
of the linear system. The collision term in Eq. (3b) produces a damping of L1

and drives the system towards isotropy, a prerequisite for local equilibrium.
When L1 = 0, the system behaves as in ideal hydrodynamics L0 ∼ τ−a0 .
There is no contribution of the collision term in Eq. (3a) since collisions
conserve energy. The Ln moments have all the same dimension, that of the
energy density. Equatios (3) are the first in an infinite hierarchy of equations
that couple Ln to its nearest neighbours, Ln+1 and Ln−1. Thus, in Eqs. (3),
L1 is coupled to L0 and L2. After an appropriate treatment of L2, Eqs. (3)
yield an effective theory for L0 and L1, that is for the energy-momentum
tensor. In particular, these equations contain “second order” hydrodynamics
as a special limit.

To see that, we express the moments in terms of the more familiar hy-
drodynamical variables. We call P the equilibrium pressure (related to the
energy density by the equation of state), and set π = −c0L1 with π the
viscous pressure. Then, Eq. (3a) takes the form

dε

dτ
+

ε+ P
τ

=
π

τ
. (4)

This equation translates the conservation of the energy-momentum tensor,
∂µT

µν = 0, for Bjorken flow. In ideal hydrodynamics, the viscous pressure
is neglected (L1 → 0), and, for massless particles, P = ε/3. The solution

1 These moments Ln, introduced in [3], are distinct from those most commonly used
(see e.g. [5]). They also differ slightly from those used in [6]. Note that although
the knowledge of the Ln moments does not allow us to reconstruct from them the
distribution function, they provide an exact description of the components of the
energy-momentum tensor.
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of Eq. (4) is then ε(τ) ∼ τ−4/3. By taking into account the viscous effects
via the leading order constitutive equation π = 4η/(3τ), with η the shear
viscosity, one obtains the Navier–Stokes equation

dε

dτ
= −a0

τ

(
ε− η

τ

)
. (5)

An equation similar to Eq. (3b) was introduced by Israel and Stewart [7]
in order to cure problems of the relativistic Navier–Stokes equation. In the
present context, it takes the form of a relaxation equation for the viscous
pressure π, forcing it to relax towards its Navier–Stokes value 4η/(3τ) over
a time scale τπ

∂τπ +
aIS1
τ

π = − 1

τπ

(
π − 4η

3τ

)
. (6)

This equation reduces identically to Eq. (3b) after setting τπ = τR and
aIS1 = a1. It can be verified that all second-order formulations of hydrody-
namics for the boost-invariant system share the same mathematical struc-
ture as that encoded in the linear system (3), modulo the adjustment of the
parameters b1 (or η), τR → τπ and a1 − a0 → λ1, where τπ an λ1 may be
viewed as second-order transport coefficients (see [8] for a more complete
discussion).

To proceed further, it is convenient to define

g(w) ≡ τ

L0

∂L0

∂τ
= −1− PL

ε
, (7)

where w ≡ τ/τR. The quantity g(w) may be viewed as the exponent of the
power laws obeyed by the energy density at early or late times (in both cases
g(w) becomes constant). It is also a measure of the pressure asymmetry. In
particular, the second relation, which follows easily from Eqs. (3), shows
that in the free streaming regime, where PL = 0, g = −1, while in the
hydrodynamical regime, where PL = ε/3, g = −4/3. In terms of g(w),
Eqs. (3) become a first-order nonlinear ODE2

w
dg

d lnw
= β(g, w) ,

−β(g, w) = g2 + (a0 + a1 + w) g + a1a0 − c0b1 + a0w − c0c1
L2

L0
. (8)

Let us first ignore the term L2. Then, in the absence of collisions, or for
small w, this non-linear equation has two fixed points that we refer to as un-
stable (g−) and stable (g+) free streaming fixed points, whose values coincide

2 An equation very similar to this one was considered in [9].
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with the eigenvalues of the linear system (3) (with L2 = 0). Numerically,
g+ = −0.929, g− = −2.213. As discussed in [10], this fixed point structure is
little affected when higher moments are taken into account, leading eventu-
ally to the exact values of the fixed points, respectively −1 and −2. In fact,
to obtain an accurate description of the solution in the vicinity of a fixed
point, it is enough to inject into Eq. (8) the value of L2 in the vicinity of the
corresponding fixed point, and this is known. For instance, near the stable
free streaming fixed point Ln/L0 = An, where An is a known number (e.g.
L2/L0 = 3/8). The effect of the entire tower of higher moments can then
be absorbed in a renormalisation of the parameter a1 of the two-moment
truncation

a1 7→ a′1 = a1 + c1
A2

A1
=

31

15
. (9)

With this value of a1, the stable free streaming fixed point is exactly repro-
duced, i.e., g+ = −1.

This fixed point structure continues to play a role when collisions are
switched on [10]: The unstable fixed point moves to large negative values,
while the stable fixed point g+ evolves adiabatically to the hydrodynamic
fixed point, g∗ = −4/3. The location of this “pseudo-fixed point” as w
runs from 0 to ∞ corresponds (approximately) to what has been dubbed
“attractor” [9]. More precisely, the attractor is to be understood as the
particular solution of Eq. (8), gatt(w), that connects g+ as w → 0 to g∗ as
w → ∞. Such an attractor is made of three parts: the vicinities of the two
fixed points, and the transition region. The two fixed points are associated
with different, well-identified physics: one corresponds to hydrodynamics,
the other to a collisionless regime. The vicinities of these fixed points can
be described by viscous hydrodynamics for the first one, and perturbation
theory for the second. The transition region requires information on both
fixed points to be accurately accounted for.

From this perspective, the often-used terminology of “hydrodynamic at-
tractor” appears misleading. The gradient expansion is divergent, and the
full solution of the kinetic equation can be obtained in terms of trans-
series [9]. In such trans-series, the first non-trivial correction to the hy-
drodynamic gradient expansion requires information about the early time
dynamics (for an analytic solution of the system with L2 = 0, see [11]).
This information is necessary to control accurately the transition region be-
tween the two fixed points, that is to get a good description of the attractor.

We have emphasized earlier the role of the higher moments in the deter-
mination of the free streaming fixed points, and indicated that in the vicinity
of the stable fixed point, this boils down to a renomalisation of the param-
eter a1. Within the Israel–Stewart theory, changing a1 looks like changing
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a second-order transport coefficient. However, in the vicinity of the hydro-
dynamic fixed point, the gradient expansion yields Ln>1 ≃ 1/τn, so that L2

does not affect the hydrodynamic fixed point nor its leading order viscous
correction. The correct interpretation of changing a1 is to put the stable
free streaming fixed point at its right place, and this has a strong impact on
the whole attractor, except in the vicinity of the hydrodynamic fixed point.
This is clearly illustrated in Fig. 1.
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Fig. 1. Plot of the attractor solution for the pressure ratio PL/PT as a function of
w = τ/τR. The dashed curve represents the solution of the Navier–Stokes equation.
The curves labelled “IS Hydro”, “two moments”, “Kinetic-Hydro” correspond to
different values of a1, respectively, 4/3, 31/28, and 31/15. From [8].

It follows from this analysis that hydrodynamic behavior emerges where
it is supposed to do so, namely when the collision rate becomes comparable
to the expansion rate (i.e. when τ ≳ τR). The fact that Israel–Stewart
equations apparently allow “hydrodynamics” to work at early time has little
to do with the proper hydrodynamics, but rather with the fact that the
structure of Israel–Stewart equations is similar to that of the moments of
the kinetic equations. Thus, they capture features of the collisionless regime
(but only approximately, unless a1 is carefully adjusted — see in Fig. 1
the negative longitudinal pressure obtained when a1 differs from its proper
value).
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