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The existence of genuine complex conjugated poles in the gluon propa-
gator is discussed and related to confinement, string tension, and conden-
sates. The existence of the anomalous poles leads to an untrivial analytic
continuation from Euclidean to Minkowski space, where the pole part of
the propagator is related to the spectrum of excited quasi-gluons.
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1. Introduction

There is some evidence, confirmed by very different approaches [1–5],
that the gluon propagator might have anomalous complex conjugated poles.
Ab initio calculations, based on a screened perturbative expansion [3], con-
firmed the existence of the complex poles and also gave a quantitative pre-
diction for their location, by an optimized one-loop approximation [6] which
relies on the gauge invariance of the poles and provides an excellent agree-
ment with the lattice data [7] in the Euclidean space.

If the poles were genuine, the existence of a complex mass would lead to a
dynamical mechanism for the gluon confinement, with a strong damping rate
and a finite lifetime, c t ∼ 10−15 m, which would cancel the gluon from the
asymptotic states [8]. However, the dynamical description of a quasi-gluon
in Minkowski space would be plagued by the problem of analytic contin-
uation since the existence of the anomalous poles invalidates [9] the usual
Wick rotation which is used for connecting the Euclidean and Minkowki
descriptions of a field theory.

Thus, it is crucial to understand if the poles might have a genuine physi-
cal meaning in the first place. Then, an unconventional mechanism must be
devised for connecting the Euclidean and Minkowski versions of the theory
[9]. We are going to discuss such points in more detail.
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2. Are the complex poles genuine?

While the poles are required to be gauge-parameter-independent, due to
the Nielsen identities [10], the whole principal part of the gluon propagator
seems to be gauge invariant, i.e. the phase of the complex residues has been
found to be invariant by the screened expansion at one loop. Actually, from
the first principles, the screened expansion was optimized by enforcing the
gauge invariance of the whole principal part [6]. The resulting gluon prop-
agator, without any free parameter, turns out to be in excellent agreement
with the lattice data in the Euclidean space, where the principal part ∆E,
i.e. its pole part, reads

∆E

(
p2
)
=

R

p2 +M2
+

R⋆

p2 + (M2)⋆
(1)

with a quantitative prediction for the poles M = 0.581 + 0.375 i GeV and
for the phase of the residues, which is given by the ratio Im{R}

Re{R} = 3.132.
The same principal part provides a very good approximation for the whole
propagator in the IR, up to a very small correction [6, 11]. Let us explore
some physical consequences of the anomalous poles.

2.1. String tension (short-distance limit)

In the short-distance limit, the static quark potential can be approxi-
mated by its tree-level contribution

V (r) ≈ −CF(4παs)

∫
d3k

(2π)3
∆
(
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)
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π i r
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−∞

k dk ∆E

(
k2
)
ei kr

(2)
then, inserting the principal part, Eq. (1), the larger contribution is given by

V (r) = −CF
αs

r
[R exp(−Mr) +R⋆ exp(−M⋆r)] . (3)

Expanding in powers of r, up to an irrelevant additive constant

V (r) ≈ CF(2Re{R})αs

[
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r
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}
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]
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r
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)
,

(4)
where, using the above values of M and R, as predicted by the screened
expansion,

k =
−Re

{
RM2

}
2Re {R}

= 0.584 GeV2 > 0 (5)
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which gives a reasonable (gauge invariant) prediction for the string tension

σ =
4

3
αs k ≈ 0.2 GeV2 if αs ≈ 0.3 . (6)

For the latter reference, we observe that expanding ∆E in powers of 1/p2

reads
∆E

(
p2
)
= (2Re{R})

[
1

p2
+

2k

p4
+O

(
1/p6

)]
. (7)

In Eq. (5), the sign of the coefficient k is correct only if R and M are
complex and their phases satisfy the condition tan θ tanϕ > 1. For instance,
a real pole would give the wrong sign for the string tension and for the 1/p4

term, giving rise to an ordinary Yukawa potential. Thus, the existence of
the complex poles seems to be related to the confining nature of the static
potential.

2.2. Condensates and OPE

As discussed in Ref. [12], in the Landau gauge, by OPE the gluon prop-
agator can be written as

∆E

(
p2
)
= ∆0

(
p2
)
+

Ncg
2

4(N2
c − 1)

〈
A2

〉
p4

+O
(
1/p6

)
, (8)

where ∆0 is the standard perturbative result and the 1/p4 term is provided
by OPE and related to the existence of a dimension-two gluon condensate
⟨A2⟩. The resulting expression provides a very good fit of the lattice data
in the 2–10 GeV window [12]. As shown in Eq. (7), the principal part of
the gluon already contains the 1/p4 correction with the correct sign: taking
∆0(p

2) ≈ Z/p2 for the perturbative propagator

∆E

(
p2
)
≈ Z

[
1

p2
+

Ncg
2

4Z (N2
c − 1)

〈
A2

〉
p4

]
(9)

which has the same form as Eq. (7). Then, up to an irrelevant renormaliza-
tion factor

k =
Nc

8Z (N2
c − 1)

[
g2

〈
A2

〉]
=

−Re
{
RM2

}
2Re {R}

= 0.584 GeV2 > 0 . (10)

Again, we see that the phases of R and M are essential for predicting the
correct condensates and string tension, with the correct sign.
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3. Analytic continuation

Assuming that the complex poles are genuine and related to gauge-
invariant physical observables, then the standard Källén–Lehmann spectral
representation is not valid [5, 11] and a straight analytic continuation from
Euclidean to Minkowski space would be obstructed by the existence of the
anomalous pole. We must generalize the spectral representation and intro-
duce opposite rotations for the pole parts of the propagator.

3.1. Generalized Källén–Lehmann representation

From the first principles, for t > 0, the gluon propagator can be written
in Minkowski space as

i∆µν(x, t) = ⟨0|Aµ(0) eiP ·x e−iĤtAν(0)|0⟩ =
∑
n

ρµνn eipn·x e−iEnt , (11)

and complex poles can only arise from complex energy eigenvalues [9], En =
±(ωn ± iγn), with E2

n = M2,M⋆2. Adding the twin part, for t < 0, the
Fourier transform reads

i∆(p, p0) =
∑
n

(2π)3δ3(p− pn) ρn(p)

∞∫
0

[
eip0t + e−ip0t

]
e−iEntdt (12)

which can only be finite if we assume a convergence principle requiring En =
−ω − iγ, E′

n = ω − iγ = −E⋆
n. Then the integral is finite (as it must be)

and the propagator reads

∆(p) =
∑
n

(2π)3 [2ρn(p)En] δ
3(p− pn)

p2 −M2
n

−
∑
n

(2π)3 [2ρn(p)E
∗
n] δ

3(p− pn)

p2 −M∗ 2
n

(13)
yielding, by the Lorentz invariance, for a single complex mass shell,
a Minkowskian propagator

∆(p) =
R

p2 −M2
− R∗

p2 −M2 ∗ . (14)

We observe the existence of the anomalous pole, in the first term, at E =
±
√
p2 +M2 = ±(ω + iγ). The first pole part also has the wrong sign

compared to the straight analytic continuation of the Euclidean principal
part of Eq. (1); while the regular pole part at E′ = ±E⋆ = ±

√
p2 +M⋆2 =

±(ω − iγ) has the correct sign. Thus, the Minkowskian propagator is not
the straight analytic continuation of the Euclidean pole part.
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3.2. Clockwise and anti-clockwise rotation

The opposite sign of the anomalous part can be understood by the same
convergence principle, requiring a finite outcome for any physical observ-
able or any physical quantity, like the gluon propagator, which seems to be
strongly related to physical observables, as discussed in the previous sec-
tion. Actually, when going to the Euclidean space, the usual Wick rotation
cannot be used for the anomalous part because the anomalous poles are in
the wrong sectors of the complex plane and would be crossed by the usual
rotation. As shown in Fig. 1, the anomalous part of the Minkowskian propa-
gator can only be continued to the Euclidean space by a clock-wise rotation,
which by Jordan’s lemma yields the correct (finite) analytic continuation
provided that a negative imaginary time τ < 0 is associated to a positive
real time t > 0. In more detail, taking p0 = ip4 and t = −iτ , the direct-space
propagator is defined by a Fourier transform, as a function of time with an
exponential which reads

eip0 t = eip4 τ . (15)

In the transform, the contour integral is finite if and only if t > 0 when
Im p0 < 0 and τ > 0 when Im p4 < 0. Thus, as shown in the figure and
discussed in Ref. [9], the clockwise rotation leads to the opposite imaginary-
time ordering for the anomalous part. Moreover, the reversed integration
from +∞ to −∞, along the p4 axis, leads to a change of sign for the anoma-
lous part. Thus, the untrivial analytic continuation of the Minkowskian
propagator yields the Euclidean pole part in Eq. (1), with the correct sign.

Fig. 1. Clockwise and anti-clockwise Wick rotation. The anomalous pole (A) and
the regular one (R) require a clockwise and anti-clockwise Wick rotation, respec-
tively. The shaded areas are the contours which must be chosen for t > 0 in the
Fourier transform, according to the Jordan lemma.
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4. Conclusions

In favour of the genuine nature of the poles, we reported their gauge
invariance and their physical role in determining the short-range string ten-
sion, condensates and, of course, the dynamical mass and damping of a
gluon. Thus, unless we accept that the real-time propagator does not even
exist [13], the analytic continuation of the gluon propagator must be deeply
revised [9], leading to an effective Minkowskian propagator which is not
given by the trivial analytic continuation of the Euclidean function. As
shown in [9], the resulting Minkowskian propagator would be imaginary and
defines an added spectral density which generalizes the Källén–Lehmann
representation and might improve the reconstruction of the propagator by
spectral methods.

This research was supported in part by the INFN-SIM national project
and by the “Linea di intervento 2” for HQCDyn at DFA-Unict.
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