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In the framework of a scalar QFT, we evaluate the decay of an initial
massive state into two massless particles through a triangle-shaped diagram
in which virtual fields propagate. Under certain conditions, the decaying
state can be seen as a bound state, thus it is analogous to the neutral pion
(quark–antiquark pair) and to the positronium (electron–positron pair),
which decay into two photons. While the pion is a relativistic composite
object, the positronium is a non-relativistic compound close to the thresh-
old. We examine similarities and differences between these two types of
bound states.
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1. Introduction

The positronium, being the bound state of one electron and one positron,
is one of the simplest systems described by Quantum Electrodynamics (QED)
[1, 2]. Besides its relevance in fundamental physics, its applications in
medical physics is recognized [3]. The lightest positronium, named para-
positronium (or positronium tout-court below) is the 11S0 ground-state with
anti-parallel spins. This state is not stable, but it decays into two photons
with a lifetime of about 0.12 ns [4–6]. Interestingly, in the realm of Quantum
Chromodynamics (QCD), there is an object analogous to the positronium:
the neutral pion, which is a quark–antiquark 11S0 bound state decaying into
two photons in about 8.43× 10−17 s [7].
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Yet, besides these similarities, the positronium and the pion differ sig-
nificantly from each other for important reasons. The former is a loosely
non-relativistic bound state very close to the threshold, the latter is a deeply
bound relativistic object that plays the role of a quasi-Goldstone boson of
QCD.

Nevertheless, we argue here that a similar process is at the basis of their
decays, namely a triangle-shaped loop of electrons and quarks, respectively.
In order to discuss this point of view, we construct a Quantum Field Theo-
retical (QFT) scalar toy model that, under some specific conditions, shares
some similarities with the two-photon decay of both the positronium and the
neutral pion. The aim of this study is twofold: first, an interesting aspect is
what can be learned about the QFT approach from the comparison with the
well-known and precise positronium results; second, we wonder if the QFT
approach can deliver some novel insights on the non-relativistic positronium
case. As a cautionary remark, we stress that we do not aim to compete with
the precision of QED, but rather to establish a connection between these
systems. Moreover, here we do not yet work with the ‘real case’ since we
stick to scalar fields only, which serve to highlight the main aspects of the
problem.

In particular, we shall introduce our model by fixing the Lagrangian and
discussing under which conditions it is suitable for the description of bound
state, such as positronium or pion (via the so-called Weinberg compositeness
condition [8, 9]). Moreover, the evaluation of the triangle-shaped diagram
with massive scalars circulating in it (analogous to fermions) leading to
decays into massless scalar fields (analogous to photons) allows for a simple
(and in a certain sense didactic) introduction to the main features of the
two-photon decays of the positronium and the pion.

2. Scalar model: loop-driven decay

We introduce the interaction Lagrangian as

Lint =
gS
2
Sφ2 +

gA
2
Aφ2 , (1)

with the scalar field S(x) (analogous to the positronium or the pion) with
mass MS , the (pseudo)scalar field φ(x) (analogous to the electron or the
quark) with mass mφ, and the massless scalar field A(x) (analogous to the
photon). Moreover, gS and gA stand for the coupling constants (the latter
being analogous to the electric charge). In the following, we set mφ = 1
(alias, mφ serves as a unit of energy for the model1). The scalar field S does

1 For scalars, also terms of the type S2φ2, S2A2, etc. are possible, but, for simplicity,
we retain only those analogous to the positronium case.
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not couple directly to AA, but this decay is possible via a triangle diagram
involving φ-particles, see Fig. 1. Our goal is to calculate S → AA. Note,
we assume that mS < 2mφ, thus the decay S → φφ is not kinematically
allowed. This condition is surely met when interpreting S as a φφ bound
state.

Fig. 1. Schematic illustration of the process S → AA.

Next, we briefly present the kinematics. The external momenta of the
diagram of Fig. 1 are as follows: pµS = (MS , 0⃗ ), kµ1 = (EA, 0, 0, kz), and
kµ2 = (EA, 0, 0,−kz), with EA = kz, kz > 0, and EA = MS/2. For what
concerns the internal momenta, one has: q1 = p

2 + q, q2 = p
2 − q, and

q3 =
p
2 + q − k1.

A central object is the amplitude I associated with the triangle diagram
of Fig. 1

I =

∫
d4q

(2π)4
ϕ(q⃗ )(

q21 −m2
φ + iε

) (
q22 −m2

φ + iε
) (

q23 −m2
φ + iε

) , (2)

where ϕ(q⃗ ) = eq⃗
2/Λ2 (with the choice Λ = 1) is a vertex function (chosen to

be real for simplicity) associated with the Sφφ non-local interaction [10–12]
(for a discussion of covariance, see [13]). In the following, we present two
different ways of evaluating the above integral. The first one makes use of the
Wick rotation, while the second is based on the residue theorem. The latter
allows also to identify the dominating contribution in the non-relativistic
limit.

Let us rewrite the triangle amplitude of Eq. (2) as I =
∫ d4q

(2π)4
ϕ(q⃗ )

D1D2D3

with

D1,2 = (p/2± q)2 −m2
φ + iε =

(
MS/2± q0

)2 − q⃗ 2 −m2
φ + iε ,

D3 =
(
MS/2 + q0 − k01

)2 − (
q⃗ − k⃗1

)2
−m2

φ + iε . (3)

The Wick rotation method amounts to the substitution q0 = iw, thus the
integral is performed along the vertical axis on the complex plane, which can
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be evaluated numerically. Within the residue approach, one performs the
integral over q0 analytically:

∫
dq4 =

∫
d3q

∫
dq0

Residue theorem
=

∫
d3q, and

the remaining integral numerically. The poles corresponding to D1,2,3 = 0,
see Eq. (3), are listed in Table 1. One can then write Dk = (q0−Lk)(q

0−Rk)
with k = 1, 2, 3.

Table 1. Analytical formulas for the poles. Note, q2x + q2y = ρ2.

Poles of D1 Poles of D2

L1 = −MS

2 −
√
ρ2 + q2z +m2

φ + iδ L2 = MS

2 −
√
ρ2 + q2z +m2

φ + iδ

R1 = −MS

2 +
√

ρ2 + q2z +m2
φ − iδ R2 = MS

2 +
√
ρ2 + q2z +m2

φ − iδ

Poles of D3

L3 = −
√
ρ2 + (qz − kz)2 +m2

φ + iδ

R3 =
√
ρ2 + (qz − kz)2 +m2

φ − iδ

Finally, the total decay width for the process S → AA takes the following
form:

ΓS→AA =
1

2

∣∣∣⃗k∣∣∣
8πM2

S

∣∣2igSφφ(2igAφφ)2I∣∣2 = 4
∣∣∣⃗k∣∣∣

πM2
S

g2Sψψ g
4
Aφφ |I|

2 . (4)

The results for the amplitude I of Eq. (2) are shown in Fig. 2. For increas-
ing values of s, the amplitude |I| also increases and has a cusp at the thresh-
old. Moreover, as an illustrative example, in Table 2, we present numerical
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Fig. 2. Behavior of the triangle amplitude I of Eq. (2) as a function of invariant
variable s = M2

S .
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results for two mass values of the S state. They were chosen as follows:
MS = 1, deeply bound (thus ‘pion’-like), and MS = 1.99, loosely bound
(hence ‘positronium’-like). While in the former case, the contributions from
all three poles are significant, for the latter the first ‘non-relativistic’ pole
dominates.

Table 2. Numerical results for the amplitude I of Eq. (2) for chosen mass values
for the decaying particle S. I is in units of m−2

φ .

Relativistic (MS = 1) Non-relativistic (MS = 1.99)
(pion-like) (positronium-like)

Residue theorem
|I1| 0.0039131 0.00410328

|I2| 0.00176375 0.000352004

|I3| 0.00464127 0.00104738

|I| 0.00103557 0.0034079

Wick rotation method
|I| 0.00103557 0.0034079

When the state S represents a φφ bound state, the coupling constant
gSφφ is not a free parameter any longer but can be calculated via Weinberg’s
compositeness condition as gSφφ =

(
2Σ′(s = M2

S)
)−1/2 [8, 9] (see also [10,

11] for dealing explicitly with the pion case), where the loop function Σ(s) =

−i
∫ d4q

(2π)4
ϕ(q⃗ )2

D1D2
describes the process S → φφ → S. The vertex function

ϕ(q⃗ ) is proportional to the wave function of the bound state in momentum
space. The loop function Σ(s) as well as the coupling constant gSφφ(s) are
presented in Fig. 3. While Σ(s) increases when s increases, the coupling
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Fig. 3. Left: loop function Σ(s = M2
S); Right: coupling constant gSφφ as a function

of s = M2
S .
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constant gSφφ decreases and vanishes at the threshold. As a consequence,
the coupling in the deep bound case (MS = 1) turns out to be one order of
magnitude larger than the loosely bound case (MS = 1.99).

As a final result, in Fig. 4, we present the decay width ΓS→AA (normal-
ized to g4Aφφ) as a function of the running squared mass s = M2

S . One sees
that it decreases for increasing MS and tends to 0 close to the threshold.
The coupling constant obtained by the Weinberg condition is crucial for this
behavior.
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Fig. 4. Decay width ΓS→AA (normalized to g4Aφφ) as a function of s = M2
S .

3. Conclusions

In this work, we have studied a scalar QFT that serves as a toy model for
the two-photon decays of a bound state. This decay is mediated by a triangle
diagram that we calculated using different approaches. In particular, we have
analyzed similarities and differences between the case of a deeply bound state
(pion-like), in which relativistic effects are relevant, and a loosely bound state
(positronium-like), for which one ‘non-relativistic’ pole dominates. In the
future, one should repeat this study by using fermions as intermediate states
and photons as final states. In this way, a direct connection between the
positronium and the neutral pion will be possible.

F.G. thanks for financial support from the National Science Centre,
Poland (NCN) via the OPUS project 2019/33/B/ST2/00613.
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