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Two recently developed techniques of analytic evaluation of multifold
Mellin–Barnes (MB) integrals are presented. Both approaches rest on the
definition of geometrical objects conveniently associated with the MB inte-
grands, which can then be used along with multivariate residues analysis to
derive series representations of the MB integrals. The first method is based
on introducing conic hulls and considering specific intersections of the lat-
ter, while the second one rests on point configurations and their regular
triangulations. After a brief description of both methods, which have been
automatized in the MBConicHulls.wl Mathematica package, we review some
of their applications. In particular, we show how the conic hulls method
was used to obtain the first analytic calculation of complicated Feynman
integrals, such as the massless off-shell conformal hexagon and double-box.
We then show that the triangulation method is even more efficient, as it
allows one to compute these nontrivial objects and harder ones in a much
faster way.
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1. Introduction

This talk contribution is based on [1] and subsequent works [2–6], where
the focus is on methods of analytic calculation of multiple Mellin–Barnes
(MB) integrals, their automatization, and some of their possible applica-
tions. Such integrals are useful in many domains of physics and mathemat-
ics such as quantum field theory [7, 8], electromagnetic waves in turbulence
[9], asymptotics [10], hypergeometric functions [11], etc. The need for a
systematic method of analytic computation of MB integrals was recently
emphasized for instance in [12], in the quantum field theory context, more
specifically for the computation of Feynman integrals. Indeed, Feynman in-
tegrals are fundamental objects for scattering amplitudes in particle physics
and one possible way to evaluate them is through their MB integral repre-
sentations.

The MBConicHulls.wl Mathematica package, whose first version was made
public in [1] and which we further developed in [2, 3], is an efficient tool for
the analytic computation of MB integrals which rests on two original geomet-
rical methods that we will present in this paper. In fact, prior to this work,
there has been one attempt to build a Mathematica package dedicated to this
task and called MBsums.m, which was published in the proceedings of the
MTTD15 conference [13]. In the approach developed by these authors, the
MB integrations are performed sequentially which, depending on their order,
can in principle provide at the end different series representations of the MB
integral. However, it does not seem that the results given by the MBsums.m
package are always optimal, since when applied to the MB representations
of complicated Feynman integrals, for instance, an explosion of the number
of terms renders the obtained analytical expressions difficult to use. One
may thus wonder if the iterative integration procedure is the right approach
to follow. Moreover, the MBsums.m package, in its present version, is re-
stricted to the evaluation of Mellin–Barnes integrals with straight contours
of integration. Therefore, in addition to the above-mentioned motivations
coming from [12], these two drawbacks of MBsums.m pushed us to revisit
this problem and, inspired by the works of some mathematicians [14–16],
our study gave birth to two non-iterative methods which can be used for the
evaluation of multiple MB integrals with straight or non-straight contours,
and which dramatically reduce the number of terms in the final expressions.
These two new methods rest on the introduction, during the intermediate
calculational steps, of geometrical objects associated with the MB integrand,
and give the final results in terms of (multivariable) series representations of
the hypergeometric type. The first method uses conic hulls, specific intersec-
tion of which yielding different series representations of the MB integral [1],
while the second method is based on triangulations of some configurations of



Geometrical Methods for the Analytic Evaluation of Multiple . . . 2-A12.3

points, each triangulation being in one-to-one correspondence with one series
representation [3]. These two equivalent geometrical intermediate steps are
followed by a multivariate residues analysis and, as already said above, the
whole corresponding calculational procedures have been automated in the
MBConicHulls.wl Mathematica package [17]. Although they give exactly the
same final results, the triangulation method is much faster than the conic
hulls method when used for the computation of complicated multifold MB
integrals.

The outline of this contribution is as follows. In a first introductory part,
we will recall what MB integrals are and give a short motivation for their
study. In particular, their historical link to the hypergeometric functions
theory where they can be used, among others, to study the transformation
theory of the latter, will be briefly presented as well as their use as a tool for
the computation of Feynman integrals1. One will then switch to the main
core of the paper which concerns the analytic evaluation of MB integrals.
After summarizing known facts, we will present our two methods. Then, a
brief description of some recent applications of the latter will be followed by
our conclusions.

2. Evaluating multiple MB integrals analytically

The multifold MB integrals considered in this paper take the form

IN =

+i∞∫
−i∞

dz1
2πi

· · ·
+i∞∫

−i∞

dzN
2πi

xz11 . . . xzNN

k∏
i=1

Γ ai (ei · z + gi)

l∏
j=1

Γ bj
(
f j · z + hj

) (1)

where ai, bj , k, and l are positive integers, ei, f j are N -dimensional coef-
ficient real vectors, z = (z1, . . . , zN ), and gi, hj can be complex numbers.
When not specified, as in Eq. (1), it is implicit that the contours of inte-
grations are such that, for each of the gamma functions of the numerator
of the MB integrand, they do not separate the corresponding set of poles
in different subsets. This implies that, for some MB integrals, the contours
cannot be straight lines parallel to the imaginary axis in the complex planes
of integration.

The analytic evaluation of one-fold MB integrals is mathematically well-
understood and fully described in books such as [10, 11]. The multifold
case is much less tamed. Several theoretical physicists worked a lot on the
elaboration of automatized tools necessary for the computation of MB repre-
sentations of Feynman integrals (see, for instance, [18]) and, in this context,

1 Due to the publication constraints of Acta Physica Polonica B, this part of the talk
only appears in the arXiv version.
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as mentioned previously in this paper, the MBsums.m Mathematica package
of [13], which can be used for an iterative evaluation of multiple MB integrals
with straight contours, was built a few years ago.

Nearly in parallel with these investigations, some mathematicians de-
veloped a non-iterative and rigorous approach based on the theory of mu-
tidimensional residues [19], in a series of papers [14–16]. However, to our
knowledge, they did not explicitly work out the formulas necessary for the
evaluation of N -fold MB integrals when N > 2, even in the non-logarithmic
(or non-resonant) case2. Only the N = 2 case is explicitly described in these
papers. Inspired by these works and motivated to fill this gap, we devel-
oped a first alternative and efficient method [1] based on conic hulls which,
although not established with the same level of rigor as in [14–16], has been
tested on a considerable number of examples, either analytically when re-
sults were available for comparison, or numerically. We are now going to
describe this method in more detail but for this, we have to first recall a few
general facts about MB integrals.

There are two main types of MB integrals:

— The degenerate3 (also called “balanced”) type, where ∆
.
=

∑
aiei −∑

bjf j = 0. In this case, several series representations of the corre-
sponding MB integral coexist which are in general analytic continua-
tions of one another. The MB representations of Feynman integrals
belong to this class.

— The non-degenerate type, which satisfies ∆ ̸= 0. In the latter case,
one or more convergent series converge for all values of the scales.
Additionally, asymptotic series also arise.

MB integrals can be further classified regarding the singularity structure of
their integrand:

— The non-resonant (also called “generic”) case: Here, the number of
singular hyper-planes intersecting at any pole is equal to the number
of folds of the MB integral.

— The resonant (also called “logarithmic”) case, where the number of
singular hyper-planes intersecting at some or all poles is greater than
the number of folds of the MB integral, giving birth to logarithmic
contributions in the series representations.

The conic hulls/triangulation methods described below can be used to com-
pute MB integrals falling into any of these classes.

2 The N = 2 logarithmic case was considered in [20] (for MB integrals with straight
contours).

3 There is, in fact, another, slightly different, degenerate case, see [16].
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2.1. Brief overview of the conic hulls method (non-resonant case)

The main steps of the conic hulls method, in the non-resonant situation,
can be summarized as follows (we refer the reader to [1] for more details):

— Step 1: Find all possible N -combinations (where N stands for the
number of folds of the MB integral) of the numerator gamma functions
and retain non-singular ones.

— Step 2: Associate a series (building block) with each combination
(obtained from a residue calculation at the poles of the corresponding
gamma functions).

— Step 3: Construct a conic hull for each combination/series.

— Step 4: The largest intersecting subsets of conic hulls give series rep-
resentations of the MB integral which simply are the sums of the cor-
responding building blocks.

— Step 5: The intersecting region gives the master conic hull. The latter
is very useful to derive a master series, which can considerably simplify
the convergence analysis of the series representation.

These computational steps have been automatized in a Mathematica
package called MBConicHulls.wl [1, 17].

The resonant case is more complicated because it rests on a non-trivial
multivariate residues analysis: the series representations cannot be simply
reduced to sums of building blocks as in the non-resonant case (see [1] for
more details). In order to handle the resonant case with the MBConicHulls.wl
package, we internally used the MultivariateResidues.m Mathematica package
[21].

At Step 3 above, for a given N -fold MB integral, the possible conic
hulls are constructed from the ei (of the gamma functions in the retained
N -combinations) which play the role of basis vectors. Let us now focus
on Step 4. For complicated MB integrals, there can be hundreds or even
thousands of different series representations, each of these being a linear
combination of many multivariable series selected in a large set of such ob-
jects. For instance, the MB representation of the off-shell massless conformal
hexagon, which is a 9-fold MB integral [4, 12], has in the non-resonant case
194160 different series representations, all built from linear combinations
of dozens of series that belong to a set of 2530 different series of 9 vari-
ables. Using other computational approaches of Feynman integrals, such
as the negative dimension method [22, 23], the Yangian approach [12] or
the method of bracket [24, 25], one would also find this set of 2530 series,
however, in order to find the possible series representations built from the
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latter (and in fact, even to find a single one . . . ), one would need to know
the convergence regions of each of the 2530 series and study their possible
intersections4, which obviously is a formidable, if not impossible task.

This is where the conic hulls method provides an important improve-
ment compared to the alternative methods mentioned above: this very com-
plicated convergence analysis is completely bypassed by the introduction of
an appropriate set of conic hulls, as it is then sufficient to find their largest
intersecting subsets in order to find the series representations of the MB in-
tegral. Moreover, as a bonus described in Step 5, each relevant intersection
of conic hulls can be used to find a master conic hull, from which one can
obtain the region of convergence (or a region included in the latter) of the
series representation by finding the master series’ ones mapped back from
it. This is a conjecture that has been checked in many examples.

Let us note that, in its first version, the conic hulls method was developed
for MB integrals with non-straight contours satisfying the usual property
described in the beginning of this section. After applying it with success to
the computation of difficult non-resonant and resonant MB representations
of Feynman integrals [4, 5], we focused on the case of arbitrary straight
contours of integration (parallel to the imaginary axis in the complex planes
of the integration variables) that we solved in [2] and implemented in a new
version of MBConicHulls.wl. The solution to this problem is simple: it is
sufficient to use the generalized reflection formula

Γ (z − n) =
Γ (z)Γ (1− z)(−1)n

Γ (n+ 1− z)
(2)

in such a way that the real part of each gamma function in the numerator of
the MB integrand becomes positive along the contours. One can then apply
the conic hulls method in the same way as in the non-straight contour case.

2.2. The triangulation method

The conic hulls method is very efficient, but still too slow when dealing
with (very) complicated MB integrals. Trying to improve the method, we
found that regular triangulations of particular point configurations are dual
to the relevant intersections of conic hulls [3] and, therefore, that they can be
used to find the different series representations of a given MB integral. The
great advantage of triangulations is that, once automatized, they provide
the results for complicated integrals in a much faster way than conic hulls5.
We have thus upgraded the MBConicHulls.wl package in such a way that
now, in addition to the original conic hulls analysis, it offers the possibility

4 Note that this would also be the case with the MB method developed in [9].
5 The computational times of the two methods are compared in [3].
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to compute MB integrals from triangulations of point configurations. This
is achieved by incorporating into the package the TOPCOM software [26]
dedicated to triangulations. This way, more complicated MB integrals can
be calculated analytically.

To apply the method, one needs to perform a change of the integration
variables in order to rewrite Eq. (1) in the canonical form

IN =

+i∞∫
−i∞

dz1
2πi

· · ·
+i∞∫

−i∞

dzN
2πi

Γ (−z1) . . . Γ (−zN )
k′∏

i=N+1

Γ a′i (s′i(z))

l∏
j=1

Γ b′j
(
t′j(z)

) x′z11 . . . x′zNN

(3)
where we have pulled out the factors Γ (−z1) . . . Γ (−zN ) in the numerator.
One can then build the needed configuration of points as a set of N points

P1 = e′i1 , P2 = e′i2 , · · · PN = e′iN (4)

and
∑k′

i=N+1 a
′
i additional points corresponding to the unit vectors of di-

mension
∑k′

i=N+1 a
′
i. This set of N +

∑k′

i=N+1 a
′
i points is the one on which

the triangulations are performed.
We applied the method on various Feynman integrals having MB rep-

resentations with a high number of folds. Coming back to the hexagon
and double-box [4], for instance, we could show that they have respectively
194160 and 243186 different series representations and, exploring these large
sets, that there are simpler series representations than those obtained in [4]
in the non-resonant case and in [1] in the resonant case. We also used the off-
shell one-loop scalar massless N -point Feynman integral with generic powers
of the propagators to test the computational possibilities of the triangula-
tion approach. At N = 15 (the MB representation of the 15-point integral
has 104 folds), TOPCOM seems to reach its limits but it is still possible to
obtain some triangulations with the help of an average personal computer.

3. Conclusions

We have shown that N -fold MB integrals can be analytically computed
in a non-iterative way by introducing conic hulls or triangulations of point
configurations. Both the resonant and non-resonant cases can be handled
by these methods which are automatized in the MBConicHulls.wl package.
This package was used to perform the first analytic computation of the
massless off-shell conformal hexagon and double box for generic and unit
powers of the propagators. It can also be used to study the transformation
theory of multivariable hypergeometric functions, which has been largely
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unexplored, in a systematic way. However, a lot of work remains to be
done for a full understanding of the field of investigations that these new
approaches have opened. For instance, one would like to apply them to the
calculation of MB representations of Feynman integrals having less scales
than integration variables (presently, this can be done in certain cases but
not all). It would also be interesting to better understand the master series
conjecture and to find the rigorous link between triangulations and conic
hulls. Another problem concerns the “white zones” which are regions where
none of the series representations extracted from a direct calculation of many
MB integrals converge: finding a systematic way to obtain series represen-
tations valid in these regions would be important. At last, a deeper study
of non-degenerate MB integrals and their links with asymptotics in several
variables, resurgence, etc. will probably yield interesting results.

S.F. thanks the organizers of MTTD23 for the very nice atmosphere of
the conference and interesting talks and discussions.
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