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We describe our algorithm to find the series expansion of multivariate
hypergeometric functions (MHFs) in ϵ that lie in the Pochhammer param-
eters and its Mathematica implementation MultiHypExp.
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1. Introduction

Multivariate hypergeometric functions (MHFs) are widespread in many
branches of physics and mathematical physics. In the context of high-energy
physics, the Feynman integrals can be expressed in terms of MHFs. In di-
mensional regularization, the dimensional parameter ϵ = (4−D)/2 appears
linearly in the Pochhammer parameters. On the other hand, the ratios of
the scales involved in the integral take their place as the arguments of the
MHFs. Such MHFs are often expressed as a Laurent series in ϵ. Thus, effi-
cient algorithms to find the series expansion of MHFs about their parameters
are necessary. Here, we discuss the algorithm proposed in [1] and its Math-
ematica realization MultiHypExp [2] with an example of the single variable
Gauss 2F1 function for the purpose of illustration.

2. Our algorithm

The steps of the algorithm proposed in [1] are summarized below.

— Step 1 : Distinguish the type of series expansion (Taylor or Laurent
types) by examining the Pochhammer parameters of the given MHF
(say F (ϵ)).
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— Step 2 : Find the series expansion of F (ϵ), if it is of the Taylor type.

— Step 3 : If the series expansion is of Laurent type, find a secondary
function, say G(ϵ) that can be related to F (ϵ) by a differential operator
H(ϵ) as

F (ϵ) = H(ϵ) •G(ϵ) (1)

and G(ϵ) can be expanded in the Taylor series following Step 2. Here,
the symbol • means the action of the differential operator H(ϵ) on the
function G(ϵ).

— Step 4 : Find the corresponding differential operator H(ϵ).

— Step 5 : Perform the series expansion of the operator H(ϵ); and apply
it on the Taylor expansion of G(ϵ) and collect different powers of ϵ.

We now discuss each of the steps below.

2.1. Step 1: Determination of the type of the series expansion

The series expansion of an MHF may be of Laurent series if any of the
following situations appear:

1. When one or more lower Pochhammer parameters (i.e., Pochhammer
parameters in the denominator) are of the form: (−p+ qϵ)p;

2. When one or more upper Pochhammer parameters (i.e., Pochhammer
parameters in the numerator) are of the form: (p+ qϵ)−p,

where p is a non-negative integer. We call a Pochhammer parameter singular
if it satisfies any of the above two conditions. Note that these are necessary
but not sufficient conditions.

2.2. Step 2: Taylor expansion of MHF

In [1], the coefficients of the Taylor series expansion of the given MHF
are expressed as MHFs with higher summation fold but having the same
number of arguments as in the given MHF. We modify Step 2 of the algo-
rithm from [1] in order to express the series coefficients in terms of multiple
polylogarithms (MPLs). We follow the following steps:

— At first, the set of partial differential equations (PDEs) of the given
MHFs F (ϵ) is obtained. Let,

F := F (a; b;x) =
∑

m∈Nr
0

(a)µ·m
(b)ν·m

xm

m!
=

∑
m∈Nr

0

A(m)xm . (2)
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The annihilators Li of F (a; b;x) are given by [3]

Li =

[
hi(θθθ)

1

xi
− gi(θθθ)

]
, (3)

where θθθ = {θ1, . . . , θn} is a vector containing Euler operators θi =
xi∂xi and

A(m+ ei)

A(m)
=

gi(m)

hi(m)
, i = 1, . . . , n , (4)

where ei is a unit vector with 1 in its ith entry.

— The PDEs are brought to the Pfaffian form: dg = Ωg, where Ω =∑n
i=1Ωidxi and the vector g contains the function F , and its deriva-

tives
g = (F , θiθiθi • F , θiθjθiθjθiθj • F , . . . )T . (5)

— The Pfaffian system is brought to the canonical form [4, 5], where the
parameter ϵ is factored out: dg′ = ϵΩ′g′.

— With a suitable boundary condition, the system is solved in order-by-
order in ϵ.

2.3. Step 3: Construction of the secondary function

The secondary function G(ϵ) related to F (ϵ) can be obtained by per-
forming the following replacements of the Pochhammer parameters of F (ϵ):

1. When one or more lower Pochhammer parameters of F (ϵ) are singular,
then (−p+ qϵ)p → (1 + qϵ)p;

2. When one or more upper Pochhammer parameters of F (ϵ) are singular,
then (p+ qϵ)−p → (qϵ)−p.

2.4. Step 4: The differential operator

In [6], a general algorithm based on the Gröbner basis techniques is
provided by Takayama to find differential operators that relate two MHFs
with Pochhammer parameters differed by integer values. For our purpose,
we need the step-down operator for the lower Pochhammer parameters and
the step-up operator for the upper Pochhammer parameters
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F (a; b;x) =
1

bi

 n∑
j=1

νijθxj+ bi

•F (a; b+ ei;x) = H−(bi)•F (a; b+ ei;x) ,

F (a, b,x) =
1

ai − 1

 n∑
j=1

µijθxj + ai − 1

 • F (a− ei, b,x)

= H+(ai) • F (a− ei, b,x) .

2.5. Step 5: Action of the differential operator

In the final step, we apply the differential operator found in Step 4 on
the Taylor expansion of G(ϵ) obtained in Step 3.

3. Example: Gauss 2F1 function

Let us consider the following Gauss hypergeometric functions, whose
series expansion we wish to find:

F (ϵ) := 2F1(ϵ,−ϵ; ϵ− 1;x) =
∞∑

m=0

(ϵ)m(−ϵ)m
(ϵ− 1)m

xm

m!
. (6)

We notice that the lower Pochhammer parameter of F (ϵ) is singular.
Therefore, the series expansion may be of Laurent type. Therefore, we con-
struct the secondary function. The secondary function G(ϵ), which is related
to F (ϵ) and expandable in the Taylor series, can be found by replacing the
singular Pochhammer parameter,

G(ϵ) := 2F1(ϵ,−ϵ; ϵ+ 1;x) =

∞∑
m=0

(ϵ)m(−ϵ)m
(ϵ+ 1)m

xm

m!
. (7)

Next, we go on to find the Taylor series expansion of G(ϵ). By con-
structing a vector g = (G(ϵ), θxG(ϵ))T and making good use of the ordinary
differential equation of Gauss 2F1, we obtain the following Pfaffian system:

dg = Ωg , Ω =

(
0 1

x
ϵ2

x−1
ϵ

x−1 − ϵ
x

)
. (8)

Further, the Pfaffian system can be brought to the canonical form by the
transformation matrix, which can be obtained using CANONICA [7]

T =

(
1 0
0 ϵ

)
(9)
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which reads

dg′ = ϵΩ′g′ , Ω′ =

(
0 1

x
1

x−1
1

x−1 − 1
x

)
. (10)

This system can now be solved order by order in ϵ with the boundary
condition given by: g(x = 0) = (1, 0)T .

Thus, we find the Taylor series expansion of G(ϵ) as

G(ϵ) = 1 + ϵ2G(0, 1;x) + ϵ3(−G(0, 0, 1;x) +G(0, 1, 1;x)) +O
(
ϵ4
)
, (11)

where Gs are the MPLs [8, 9] defined as

G(a1, . . . , an; z) =

z∫
0

dt

t− a1
G(a2, . . . , an; t) (12)

with G(z) = 1, and ai and z being complex-valued variables.
Next, we obtain the differential operator that relates the two Gauss hy-

pergeometric functions: F (ϵ) = H(ϵ) •G(ϵ).
The required differential operator that relates the two Gauss hypergeo-

metric functions can be easily obtained

H(ϵ) =
(ϵ(2x− 1)− x+ 1)

(ϵ− 1)ϵ(x− 1)
θx +

ϵ(2x− 1)− x+ 1

(ϵ− 1)(x− 1)
.

Finally, we apply the differential operator H(ϵ) on the Taylor expansion
of G(ϵ) to find the series expansion of F (ϵ)

F (ϵ) = 1 + ϵ

[
G(1;x)− x

x− 1

]
+ ϵ2

[
− x

x− 1
G(1;x) +G(1, 1;x)− x

x− 1

]
.

The result is consistent with the result obtained using the HypExp [10]
package.

4. MultiHypExp package

We now discuss the usage of the two commands of the package MultiHy-
pExp, which can be downloaded from the following url: https://github.
com/souvik5151/MultiHypExp

It is suitable for Mathematica v11.3 and beyond. The package depends
on the following packages: HolonomicFunctions [11, 12], CANONICA [7],
HYPERDIRE [13–15], PolyLogTools [16], HPL [17, 18] .

These dependencies must be called before loading the package MultiHy-
pExp. The usages and the implementation of these packages are discussed
in detail in [2].

https://github.com/souvik5151/MultiHypExp
https://github.com/souvik5151/MultiHypExp
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The package consists of two commands:

— SeriesExpand: To find the series expansion of certain MHFs about
their integer-valued Pochhammer parameters;

— ReduceFunction: To find the reduction formula of certain MHFs in
terms of MPLs.

We give examples of the usage of these commands below.
The first three coefficients of the series expansion of Appell F3(ϵ, ϵ, ϵ, 1+

ϵ; 1 + ϵ;x, y) about the parameter ϵ can be obtained by calling the
SeriesExpand command in the following way:

In[]:= SeriesExpand[F3,{e,e,e,1+e,1+e},{x,y},e,3]

In the standard form, the output of the above command reads

F3(ϵ, ϵ, ϵ, 1 + ϵ; 1 + ϵ;x, y) = 1−G(1, y)ϵ+ (−G(0, 1, x) +G(1, 1, y))ϵ2

In[]:= ReduceFunction[F3,{1,1,2,2,3},{x,y}]

To find the reduction formula of Appell F3(1, 1, 2, 2; 3;x, y) in terms of
MPLs, we call the ReduceFunction command as above. The output can
be written in the standard form, after converting MPLs to ordinary loga-
rithms as

F3(1, 1, 2, 2; 3;x, y) = −2(−xy + x+ y + log(1− x) + log(1− y))

(x+ y − xy)2
.

5. Conclusion

We have presented an efficient algorithm to find a series expansion of
MHFs and discussed its implementation in Mathematica. We conclude with
some remarks. The algorithm is applicable when the parameter ϵ appears
linearly inside the Pochhammer parameters of the MHFs. Furthermore, the
series expansion of a given MHF is not applicable to its singular locus. The
package is capable of finding the series expansion of certain MHFs around
integer values of the Pochhammer parameters. Sometimes the MHFs are
needed to series-expand around rational values of parameters, which requires
some non-trivial change of variables (see [19]) or may require functions be-
yond MPLs. We plan to explore the possibilities of finding a series expansion
of MHFs for such cases.
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