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We discuss the Minimal Left–Right Symmetric Model (MLRSM) with
and without non-renormalizable operators of dimension 6. We update a fit
for MLRSM based on low-energy electron–hadron, neutrino–hadron, and
neutrino–electron processes and consider one-loop effects for the neutrino–
hadron process with left-handed neutrino and up-quark interactions. For
the same process, we examine dimension-6 operators of the ϕ2X2 class and
show predictions for relevant Wilson coefficients.

DOI:10.5506/APhysPolBSupp.17.2-A15

1. Effective left–right symmetric model

In this note, we discuss an update based on [1] for the Minimal Left–
Right Symmetric Model (MLRSM) parameters constraints coming from low-
energy processes. We estimate 1-loop MLRSM effects in neutrino–quark
interactions within the model. Further, we discuss the minimally chosen
low-energy effective theory based on the MLRSM as introduced in [2] and
include the effects of dimension-6 effective operators. We consider 1-loop
corrections to neutrino–quark low-energy interactions in this scenario as well.
Doing so, we adopt a specific subset of the ϕ2X2 class of operators [3], and
estimate Λ2 suppressed corrections and Wilson coefficients (WCs) connected
with neutrino–quark interactions.

For a complete definition of Lagrangians, observables, corresponding
model parameters, and approximations applied within UV-finite and dimen-
sion-6 extension of the MLRSM, we refer to [1, 4] and [2, 3], respectively.
Model assumptions (e.g. WL–WR, light–heavy neutrino mixings) used in the
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case of 1-loop corrections for low-energy neutral-current interactions, have
been followed from [5–7], where muon decay 1-loop effects were considered.
We apply the same model assumptions in the present work.

2. Data and model’s predictions

Let us start with the low-energy observables given in Table 1. Corre-
sponding Lagrangians with definitions of observables, e.g. ϵL,R(u, d) param-
eters can be found in [1]. They can be obtained from the effective four-
fermion contact Lagrangian

LνN = −GF√
2
ν̄γµ(1− γ5)ν

∑
i=u,d

[ϵL(i)q̄iγµ(1− γ5)qi + ϵR(i)q̄iγµ(1 + γ5)qi] .

(1)

Table 1. Low-energy neutral current parameters used in [1] (in squared brackets,
based on 1998 PDG data [8]) and updated data for g2L, g

2
R, g

νe
V , ΘL, ΘR taken from [9]

(based on 2008 PDG [10]).

Experimental value Correlations

ϵL(u) 0.328± 0.0016

ϵL(d) −0.440± 0.011 non-

ϵR(u) −0.179± 0.0013 Gaussian

ϵR(d) −0.027+0.07
−0.048

g2L 0.3005± 0.0012 [9] [0.3009± 0.0028]

g2R 0.0311± 0.001 [9] [0.0328± 0.003]

ΘL 2.51± 0.033 [9] [2.50± 0.035] small

ΘR 4.59± 0.041 [9]
[
4.56+0.42

−0.27

]
gνeV −0.040± 0.015 [9] [−0.041± 0.015] −0.04

gνeA −0.507± 0.014

C1u −0.216± 0.046 −0.997

C1d 0.361± 0.041 0.78

C2u − 1
2C2d −0.03± 0.12
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Comparing Eq. (1) with the MLRSM neutral current interaction,

LNC =
e

2 sin θW cos θW

∑
i=u, u,

∑
j=1,2

ψ̄iγ
µ
[
Aji

LPL +Aji
RPR

]
ψiZjµ

+e
∑
i=u, d

Qiψ̄iγ
µψiAµ , (2)

ϵL,R(u, d) can be expressed through Z1–Z2 mixing ϕ and γ =
M2

Z1

M2
Z2

. For

details, see [1].
Let us note that for g2L and g2R observables, errors reported by PDG

shrunk considerably. This has visible consequences for the model fitting
which has been performed here with Minuit [11]. In Fig. 1, the dashed line
repeats old results given in [1]. The dotted line shows a fit for new data
(available from PDG 2008) within errors given in Table 1. From Fig. 1, we
can infer:

1. Within errors given in Table 1, fitted γ values are negative, which
means that at this level of precision, there are no physical solutions
for the model (negative MZ2);

2. Allowing the 90% C.L. fit for γ − sin2 θW, we get γ ≤ 0.00288, thus
MZ2 ≥ 1696 GeV. In [1], the fit gave MZ2 ≥ 1475 GeV.
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Fig. 1. Fits for data used in [1] (dashed line, based on PDG data [8]) and updated
g2L, g

2
R, g

νe
V , ΘL, ΘR (dotted and solid lines, taken from [9]). Scenario with no WL–

WR mixing. For dashed and dotted lines, uncertainties are taken as given in Table 1.
For solid lines, the most sensitive g2L, g

2
R parameters are given with two times larger

errors.
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It is reasonable to ask how radiative corrections to the electron–hadron,
neutrino–hadron, and neutrino–electron processes would change the situa-
tion. Measurements for these observables have been reported in Table 1.
Here, we present 1-loop corrections to the neutrino–quark observable ϵL(u)
defined in Eq. (11). At this level of accuracy, we have to consider virtual
effects connected to the heavy sector of MLRSM. Assuming that scalar po-
tential couplings are of the order of one, scalar masses cluster into three
groups

MHa ≡ MH0
1
=MH0

3
=MA0

1
=MA0

2
=MH+

1
=MH+

2
=Mδ++

L
=
vR√
2
, (3)

MHb
≡ MH0

2
=Mδ++

R
=

√
2vR , (4)

MH0
0

=
√
2κ1 , (5)

where vR and κ1 are right-handed triplet and bi-doublet VEVs in MLRSM.
From Fig. 2, we get (in brackets 90% C.L. region is given)

1935 (1820) GeV ≤ vR ≤ 2560 (2840) GeV . (6)

For the result, we have taken heavy scalar masses MH = 5 TeV and three
heavy neutrinos with masses mN =

√
2hMvR, hM = 1.
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Fig. 2. The corrected result for MLRSM by 1-loop corrections and the ϵL(u) pa-
rameter defined in Eq. (1). The central solid horizontal line is the SM prediction
with SM corrections included and sin2 θW ≡ ŝ2Z = 0.23124± 0.00017, as discussed
in [1]. Dashed lines take into account uncertainty for ϵL(u) given in Table 1.
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These ranges of allowed parameters should be compared with 1-loop
results obtained for the muon decay ∆r parameter in [6]. For the same set
of MH and mN parameters (in brackets 90% C.L. is given), we get

2720 (2530) GeV ≤ vR ≤ 2740 (2900) GeV . (7)

As we can see:

1. The constraints for vR ranges are much tighter for the muon decay ∆r
parameter [1] than for the neutrino–quark ϵL(u) parameter.

2. There is a slight tension between ranges in Eqs. (7) and (6). The
ranges are consistent at and beyond 90% C.L.

3. Increasing heavy sector masses (scalars, neutrinos, gauge bosons),
ranges for vR move towards higher values accordingly.

Renormalization of vertices and the ϕ mixing are required for getting the
result in Fig. 2. The discussion of numerical 1-loop results for the remaining
parameters given in Table 1 will be given elsewhere.

Now, we go a step further in investigating the left–right symmetric
model and look at whether non-renormalizable higher-dimensional opera-
tors can influence low-energy observables. The complete independent set of
dimension-6 effective operators has been computed using GrIP [12]. We focus
on a subset of the ϕ2X2 class of operators. For a complete set of eight classes
at mass dimension-6: ϕ6, X3, ϕ2X2, ϕ4D2, ψ2ϕ2D, ψ2ϕX, ψ2ϕ3, ψ4, see
[2]. A complete discussion on how these operators redefine low-energy ob-
servables through Λ2 suppressed corrections to observables such as the weak
mixing angle (θW), ρ-parameter, the Fermi constant (GF), has also been
presented in [3]. Just to remind, the relevant dimension-6 operators of the
ϕ2X2 class are

ORrWLWL
∆W , ORrWRWR

∆W , ORWRrWR
∆W , ORr

∆WRB , ORr
∆B , (8)

which correspond to parts of the Lagrangian with triplet scalars ∆L,R and
gauge boson field strength tensors Wµν

L,R [2, 3],

Tr
[
∆†

R∆RWLµνW
µν
L

]
, Tr

[
∆†

R∆RWRµνW
µν
R

]
, Tr

[
∆RWRµν∆

†
RW

µν
R

]
,

Tr
[
∆†

RW
µν
R ∆R

]
Bµν , Tr

[
∆†

R∆R

]
BµνB

µν . (9)

The effective MLRSM fitting parameters are,

ΘWLL
= v2RCRrWLWL

∆W , Θ3R3R = v2R

(
CRrWRWR
∆W − CRWRrWR

∆W

)
,

ΘWRR
= v2RCRrWRWR

∆W , Θ3RB = −1

2
v2RCRr

∆WRB ,

Θ3L3L = v2RCRrWLWL
∆W , ΘBB = v2RCRr

∆B . (10)
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The Cis in Eq. (10) are Wilson coefficients which correspond to the opera-
tors listed in Eqs. (8)–(9). The Λ-dependent neutrino–quark Lagrangian for
neutral current interactions can then be expressed as

LNC
νQ =

g2

4 cos2 θWM2
Z1,2

ν̄Lγ
µνL

×
(
ζ1,2νL∗uL

ūLγ
µuL + ζ1,2νL∗uR

ūRγ
µuR + ζ1,2νL∗dL d̄Lγ

µdL + ζ1,2νL∗dR d̄Rγ
µdR

)
. (11)

As in the case of four-fermion contact interactions and 1-loop effects
discussed earlier, we will consider dimension-6 effective MLRSM corrections
to the ϵL(u) observable. Thus, we give below only the required subset of
parametrization for Eq. (11). Complete definitions can be found in [3]. In
terms of the effective operators, ϵL(u) can be written as

GF√
2
ϵeffL (u) =

g2

4 cos2 θW

[
ζ1νL∗uL

M2
Z1

+
ζ2νL∗uL

M2
Z2

]
, (12)

where

ζ1νL∗uL
= [aνL cos θ2 + bνL sin θ2]× [auL cos θ2 + buL sin θ2] , (13)

ζ2νL∗uL
= [aνL sin θ2 − bνL cos θ2]× [auL sin θ2 − buL cos θ2] . (14)

In good approximation tan 2θ2 =
1
4
g2κ2

+

√
cos 2θW

1
4
g2κ2

+ sin2 θW− 1
2
(g2+g̃2)v2R cos2 θW

. Now, the

parameters aiL,R and biL,R can be expanded in Λ as follows for νL and uL,
respectively,

aνL = 1 +
1

Λ2

[(
cos2 θWΘ3L3L

)
+

(
sin3 θW√
cos 2θW

Θ3RB + sin2 θWΘBB

)]
, (15)

bνL = − sin2 θW√
cos 2θW

+
1

Λ2

[(
sin θWΘ3RB − sin2 θW√

cos 2θW
ΘBB

)]
, (16)

auL =

(
cos2 θW − 1

3
sin2 θW

)
+

1

Λ2

[(
cos2 θWΘ3L3L

)
− 1

3

(
sin3 θW√
cos 2θW

Θ3RB + sin2 θWΘBB

)]
, (17)

buL =
1

3

sin2 θW√
cos 2θW

+
1

Λ2

[
1

3

(
− sin θWΘ3RB +

sin2 θW√
cos 2θW

ΘBB

)]
. (18)
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In the Λ→ ∞, vR → ∞ limit, the SM expression ϵSML (u), given for instance
in [1], is recovered. As we can see from Eqs. (15)–(18), ϵeffL (u) depends on
Θ3L3L, Θ3RB, ΘBB, so on three WCs CRrWLWL

∆W , CRr
∆WRB, and CRr

∆B. In Fig. 3,
the influence of WCs on ϵL(u) is shown. Results depend on values of vR
and Λ. Taking into account ranges derived in Eq. (6) and Eq. (7), we used
vR = 2.7 TeV and Λ = 105 TeV. For higher Λ, smaller values of WCs can
contribute at the same level to ϵeffL (u).
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Fig. 3. Influence of effective dimension-6 operators on the low-energy observable
ϵL(u) for Wilson coefficients CRrWLWL

∆W , CRr
∆WRB , and CRr

∆B .

3. Conclusions

In this article, we have considered the MLRSM to be an effective theory.
We updated a fit to the low-energy neutral processes in the UV-finite sce-
nario. Here, we noted the sensitivity of the fit to the g2L and g2R input. Next,
we investigated MLRSM predictions to the ϵL(u) observable in more detail.
First, in Fig. 2, the 1-loop corrections sensitive to the heavy sector of the
theory (scalar and gauge bosons, neutrinos) have been evaluated. Within
the experimental accuracy of ϵL(u), the allowed range of vR has been deter-
mined for a chosen set of MLRSM heavy sector masses. Second, for a subset
of the ϕ2X2 class of dimension-6 operators, in Fig. 3, we have shown the
influence of Wilson coefficients CRrWLWL

∆W , CRr
∆WRB, and CRr

∆B to ϵL(u). Here,
crucial factors are vR and Λ parameters.
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