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We present the one-loop correction to the W -boson mass in U(1)z-type
extensions of the Standard Model. We compare it to an approximation,
often used in high-energy physics tools. We point out that if the Z ′ boson
— predicted in U(1)z-type extensions — is much heavier than the Z boson,
then the use of the complete set of one-loop corrections is necessary.
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1. Introduction

So far no new elementary particles have been observed besides the ones
predicted by the Standard Model (SM). This is in contrast with the fact
that we observed phenomena which cannot be explained in terms of the SM,
although a particle physics origin for these phenomena is well motivated.
Trócsányi’s contribution to these proceedings [1] gives a detailed account on
the Beyond Standard Model (BSM) phenomena and their possible resolution
in terms of a particular U(1)z-type extension. These U(1)z-type extensions
are possibly the simplest realizations of a fifth fundamental force in nature,
and hence a new gauge boson, denoted with Z ′.

The non-observation of new BSM particles motivates one to examine
indirect effects of the BSM physics in observable quantities. The excellent
and ever increasing precision of experimental results and SM theory predic-
tions allows one to expose quantum corrections which cannot be explained
in terms of the SM if the deviation between the experimental result and
theory prediction is sufficiently large.
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Here, we present the complete computation of one-loop corrections to the
mass MW of the W boson in U(1)z extensions and argue that the precision
of the BSM predictions is also an important feature since it could give a
false positive or a false negative prediction for the presence of new physics.

2. W -boson mass

The W boson is the charged mediator of the weak interaction. Both
the experimental results and theoretical predictions for its mass have a high
precision, with an uncertainty of about 10 MeV or one part in ten thou-
sand. This precision has the potential to expose BSM effects or to severely
constrain the parameter space of a given model describing BSM physics.

On the experimental side, the world average cited in the 2022 version of
the Particle Data Group [2] is

M exp
W = (80377± 12) MeV . (2.1)

The W -mass gained a lot of attention after the CDFII result [3] was pub-
lished, which is not yet included in the PDG world average. This motivated
the ATLAS experiment at the Large Hadron Collider to reanalyze its 2011
data set and publish an improved result recently. The two results

MCDFII
W = (80434± 9) MeV and MATLAS

W = (80360± 16) MeV (2.2)

differ by four standard deviations. A compilation of experimental results by
the ATLAS experiment is shown in Fig. 1.

Fig. 1. ATLAS Experiment: Measurements of the W -boson mass [4].
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On the theory side, MW is computed from the decay width of the muon
particle as

GF√
2
=

πα

2M2
W s2W

(1 + ∆r) , with cW =
MW

MZ
, (2.3)

where GF is the Fermi constant, α is the fine-structure constant, MZ is
the mass of the Z boson, and finally ∆r collects the quantum corrections.
The sine and cosine of the weak mixing angle θW is abbreviated as sW and
cW and we adopt this shorthand for other mixing angles in the rest of this
paper. The ∆r at one-loop in the SM was first computed in 1980 [5] and it
is given as
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(2.4)

in the on-shell renormalization scheme, where δe is the counterterm for the
electric charge, δBV are the box and vertex corrections to the muon decay
process, and ΠV V (p

2) is the transverse piece of the one-loop self-energy of the
vector boson V = Z,W . Currently, the complete set of two-loop corrections
are computed to ∆r with leading three-loop corrections [6, 7]. We evaluate
MW according to the fit formula of Ref. [7] using input parameters taken
from Ref. [2] to obtain the SM prediction

M theo
W = (80353± 9) MeV , (2.5)

where the largest sources of the uncertainty are the uncertainties of the
top-quark mass and the hadronic vacuum polarization.

3. U(1)z extensions and MW

The U(1)z extensions are relatively simple extensions of the SM with the
potential to explain several observed BSM phenomena. The model we con-
sider here contains a new neutral, massive or massless gauge boson Z ′, a new
complex scalar field χ, and right-handed sterile neutrinos. The idea is that
the new scalar field obtains a vacuum expectation value (VEV), which spon-
taneously breaks the U(1)z symmetry and provides mass to the neutrinos.
The charge assignment is constrained by the requirement to cancel gauge and
gravity anomalies and to have gauge-invariant Yukawa interactions, which
leaves the z-charge of two fields unconstrained. This gives rise to several,
phenomenologically different U(1)z extensions, such as in Refs. [8–10] and
many others.
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In order to streamline our discussion, we neglect the effect of the sterile
neutrinos in the following. In this case, there are five free parameters, for
which we select phenomenologically useful ones, i.e.

— the VEV w of the new scalar field, or rather its ratio to the VEV v of
Brout–Englert–Higgs field ϕ as tanβ = w/v;

— the mass of the new scalar boson Ms and the sine ss of the scalar mixing
angle θs used to diagonalize the mass matrix of the scalar particles(

ϕ0

χ

)
=

(
cs −ss
ss cs

)(
h
s

)
, (3.1)

where the fields on the right-hand side are the mass eigenstates;

— the mass of the new gauge boson MZ′ and the sine sZ of the mixing
angle θZ used to diagonalize the mass matrix of the neutral gauge
bosons together with the weak mixing angle Bµ

W 3
µ

B′
µ

 =

 cW −sW 0
sW cW 0
0 0 1

 1 0 0
0 cZ −sZ
0 sZ cZ

 Aµ

Zµ

Z ′
µ

 ,

(3.2)
where again the fields on the right-hand side are the mass eigenstates
and B′

µ is the new U(1) gauge field.

The masses MZ and MZ′ and also the mixing angle θZ are complicated
expressions of the Lagrangian couplings, but these can be written in compact
forms

tan(2θZ) = − 2κ

1− κ2 − τ2
,

MZ =
MW

cW

√
R(cZ , sZ) , MZ =

MW

cW

√
R(cZ , sZ) , (3.3)

with

MW =
1

2
gLv , cW =

gL√
g2y + g2L

, and R(x, y) = (x− κy)2 + (τy)2 ,

(3.4)
where gy and gL are the U(1)Y and SU(2)L gauge couplings, κ and τ are
effective couplings composed of those Lagrangian couplings and tanβ. The
mass matrix of the neutral Goldstone bosons can also be diagonalized in Rξ

gauge, but it is not independent of the neutral gauge bosons as we expect
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that the mass squared of the Goldstone bosons are ξZM2
Z and ξZ′M2

Z′ . After
some cumbersome but straightforward algebra of the diagonalization, we
obtain the equations

MZ′ (cZ − κsZ) = MZcZτ and MZ (sZ + κcZ) = MZ′sZτ , (3.5)

which can be solved for κ and τ and substituted into (3.3) to obtain

M2
W

c2W
= M2

Zc
2
Z +M2

Z′s2Z . (3.6)

This formula shows us that the ρ-parameter is already modified at tree level
by the U(1)z extension as
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, (3.7)

which, in turn, modifies the prediction for MW already at the tree level
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Z
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)
. (3.8)

The derivation of the radiative corrections ∆r is detailed in Ref. [11], here
we only highlight the fact that the renormalization of the weak mixing angle
is different than in the SM. If we split bare parameters g(0) into renormal-
ized ones plus counterterms as g(0) = g + δg, we see that counterterm δc2W
obtained from (3.6) is
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2
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)
, (3.9)

which is quite different than the one obtained in the SM, i.e. in the θZ → 0
limit. The complete expression for ∆r at one loop in the on-shell scheme is
derived in Ref. [11] and it is given as
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(3.10)
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Upon comparison to (2.4), one can recognize that the first two lines of (3.10)
are formally the same as (2.4), but the self-energies and box and vertex di-
agrams in (3.10) also include loops with BSM particles and couplings. The
counterterm for the new mixing angle can be computed using the relation-
ships between field renormalization constants. Definition (3.2) yields the
relation between the unrotated fields and mass eigenstates both for the bare
and the renormalized fields,
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Z Z(0)

µ − s
(0)
Z Z

′(0)
µ

)
, B

′(0)
µ = s

(0)
Z Z(0)

µ + c
(0)
Z Z

′(0)
µ ,
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(
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µ

)
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′
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(3.11)

The bare and renormalized unrotated fields are related as
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whereas the mass eigenstates may mix as
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Combining Eqs. (3.11), (3.12), and (3.13) yields the following relations:√
ZBcW = c
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The first equation in (3.14) yields the charge renormalization counterterm δe,
once the U(1) Ward identity ZBZgy = 1 is used, and the last two equations
can be divided to cancel ZB′ and to obtain the formula between the bare
and renormalized mixing angle sZ and hence providing δsZ . Let us remark
here that (3.14) is valid at all orders in perturbation theory and the explicit
form of δe is exactly the same as in the SM at one loop. The field renormal-
ization constants can be obtained once the renormalization scheme is set,
for instance in the on-shell scheme.

We verified that expression (3.10) is finite and independent of the gauge
parameters in the Rξ-gauge with a general charge assignment for the
z-charges. Thus, we obtain the formula for ∆r to compute how a U(1)z
extension affects the mass of the W boson.
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4. Numerical analysis

There are high-energy physics tools that are indispensable in an efficient
and detailed analysis of a BSM model. Such tools are SARAH/SPheno [12–
15] and FlexibleSUSY [16, 17]. In order to be as general as possible, these
tools do not consider new counterterms in the renormalization of the Wein-
berg angle (such as δM2

Z′ and δsZ in Eq. (3.9)) and hence the ∆r obtained
in them does not contain the third line in Eq. (3.10). We investigate if there
are regions of the parameter space, where the difference between the predic-
tion for MW obtained using Eq. (3.10) (case (i)) and using the truncation
of the HEP tools for ∆r (case (ii)) becomes relevant.

In order to perform a numerical analysis, we select the superweak ex-
tension of the SM [10], i.e. the z-charges are zQ = 1/6 for the left-handed
quark doublet and zU = 7/6 for the right-handed up quark. We also fix the
gauge to the Feynman gauge, since the predictions for case (ii) depend on
the gauge parameters.

The new gauge mixing angle θZ has to be rather small (sZ ≪ 1) in order
to produce predictions consistent with experimental bounds. The depen-
dence on sZ and MZ′ is more severe than on ss and Ms, which is not a
surprise, since the ρ parameter (3.7) has a tree-level dependence on sZ and
MZ′ . If the Z ′ boson is lighter (heavier) than the Z boson, then it makes
the W boson lighter (heavier) than in the SM. We also remark here that a
very heavy Z ′, i.e. MZ′ ≫ MZ requires the new VEV to be sufficiently large
(MZ′/w ∼ O(1)) otherwise, the new gauge couplings are not perturbative.

We observe that the use of case (ii) when MZ′ ≪ MZ is completely jus-
tified. In this region, the correction to MW,SM given in Eq. (2.5) is generally
a few MeVs and the difference between the two cases is even smaller.

We find that for a heavy Z ′ (MZ′ ≫ MZ), there are regions in the param-
eter space, where the difference between the predictions produced by cases
(i) and (ii) is above 10 MeV, the present theory and experimental uncer-
tainty of MW . Table 1 shows benchmark points in the parameter space for

Table 1. Predictions for ∆MW = MW −MW,SM in MeV units at parameter values
MZ′ = 3 TeV and ss = 0.2.

sZ 5× 10−4 10× 10−4

tanβ

Ms 0.7 TeV 3 TeV 0.7 TeV 3 TeV
(i) (ii) (i) (ii) (i) (ii) (i) (ii)

10 10 6 4 3 52 40 42 40
20 9 8 3 3 53 50 42 45
30 9 9 3 3 53 52 43 46
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a heavy MZ′ = 5 TeV. The entries of the table are the pure BSM corrections
in MeV units to the SM prediction MW,SM for several different parameters
in both cases (i) and (ii). The third column of Table 1 shows a 12 MeV
deviation between the predictions for MW in cases (i) and (ii). The renor-
malization scale dependence of these predictions is shown in the left plot of
Fig. 2. This shows us that the scale dependence of MW in case (ii) is more
prominent than in case (i).

Fig. 2. Left: The dependence of MW on the renormalization scale µ for the input
parameters MZ′ = 3 TeV, sZ = 10 × 10−4, tanβ = 10, Ms = 700 GeV, and
ss = 0.2. Right: The green and blue regions show the allowed values of MZ′ and
sZ for Ms = 700 GeV and ss = 0.2.

Finally, we present a 2σ exclusion band for the parameter plane spanned
by a heavy MZ′ and sZ based on the deviation between the experimental
result (2.1) and theoretical prediction for MW∣∣M exp

W −MW

∣∣ < 2σ , with σ =
√

σ2
exp + σ2

theo = 15 MeV , (4.1)

where MW is computed using both cases (i) and (ii). The allowed region
is shown in the right plot of Fig. 2 and reveals that for a heavy Z ′, the
exclusion is more severe using the complete set of radiative corrections, i.e.
case (i). The difference between the bands becomes more pronounced with
increasing values of MZ′ for fixed tanβ, which also corresponds to increasing
values of the new Lagrangian gauge couplings.

5. Conclusion and outlook

We presented the complete one-loop correction to the mass of the W bo-
son in U(1)z extensions, which was not available before. The prediction for
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MW using (3.10) (case (i)) is compared to a prediction for MW using a
truncated set of one-loop corrections (case (ii)) used in HEP tools. We find
that for a light Z ′ boson, the truncation used in case (ii) is completely justi-
fied. In the region of the parameter space where MZ′ ≫ MZ , the difference
between cases (i) and (ii) may be large, hence using case (i) to compute
MW is necessary. This paper is based on Ref. [11], where a detailed account
of the numerical analysis can be found. We plan to extend this work to
compare the exclusion of (4.1) using (3.10) to exclusion limits produced by
direct searches in particle colliders.
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