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Flavour (and CP) symmetries can be the key to understanding fermion
masses and mixing. In theories beyond the Standard Model, they can also
be crucial in order to understand, for example, the suppression of certain
flavour-violating signals and the correlation among the generated amount of
baryon asymmetry of the Universe and the size of CP violation, potentially
observable in neutrino experiments. We present two models, an extension
of the Standard Model with a leptoquark and a dihedral flavour group as
well as a low-scale type I seesaw scenario with a flavour and a CP symmetry.
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1. Introduction

The Standard Model (SM) is very successful. Nevertheless, several phe-
nomena cannot be explained within the SM. The replication of fermion
generations remains a mystery, and also the hierarchy among the charged
fermion masses, e.g. me

mt
∼ 10−6, as well as the large disparity between

charged fermion and neutrino masses, me ∼ 0.5MeV and mν ≲ 0.1 eV, are
unexplained. Furthermore, the fact that quark mixing is small [1], i.e.

|VCKM| =

 0.974 0.225 3.69× 10−3

0.225 0.973 4.18× 10−2

8.57× 10−3 4.11× 10−2 0.999

 , (1)

while two of the lepton mixing angles are large [2], i.e.

|UPMNS| =

 0.825 0.544 0.148
0.272 0.606 0.748
0.494 0.580 0.647

 , (2)
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is not addressed in the SM. Among these unexplained phenomena is also the
observed baryon asymmetry of the Universe (BAU) [3], that is the fact that
there is more matter than antimatter in our Universe

YB =
nB − nB̄

s

∣∣∣∣
0

= 8.75× 10−11 . (3)

In beyond SM (BSM) theories, different types of signals can be generated,
e.g. processes forbidden or highly suppressed in the SM can be within reach
of current (and near-future) experiments, such as the decay µ+ → e+γ with
BR(µ+ → e+γ) < 3.1 × 10−13 at 90% C.L. [4]. In general, flavour and CP
violation need to be kept well under control in BSM theories. On the other
hand, different types of BSM theories lead to possible correlations among
various signals that could help to identify one or the other type as more
promising theory.

All the mentioned facts can be related to a certain organising principle
of the flavour sector. Given the overwhelming success of symmetries in the
description of gauge interactions (in the SM), we propose that a so-called
flavour symmetry Gf serves as such an organising principle. Since also CP
violation seems to follow a certain pattern, the existence of CP symmetries
(acting on the flavour sector) can be relevant as well.

2. Flavour (and CP) symmetries

Before making use of a flavour symmetry Gf , several of its properties have
to be specified: it could be an Abelian or non-Abelian symmetry, it could
be continuous or discrete, it could be a local/gauge or a global symmetry, it
might be spontaneously broken or explicitly, this symmetry could be broken
arbitrarily or to non-trivial subgroups, and eventually, it could be broken
at low or high energies. Furthermore, its maximal possible size depends
on the chosen gauge group, e.g. in the SM (without right-handed (RH)
neutrinos), the maximal size is U(3)5, while it is only U(3) in conventional
SO(10) models. In the following, we use non-Abelian, discrete groups that
are broken to non-trivial subgroups as flavour symmetries.

There are many potentially suitable options for such a flavour symme-
try: dihedral symmetries Dn and D′

n, symmetric and alternating groups, Sn

and An (for small n), discrete subgroups of the modular group, the groups
Σ(nφ), as well as the series of groups ∆(3n2) and ∆(6n2). The latter are
also of particular interest, when combined with CP symmetries. For reviews,
see e.g. [5–8].

In the following, we present two examples: the first one with a dihedral
group Dn [9] and, as the second one, a study using the series of groups
∆(3n2) and ∆(6n2) combined with CP [10].



Phenomenology of Flavour (and CP) Symmetries 2-A20.3

3. Model with leptoquark and dihedral flavour symmetry D17

Dihedral symmetries Dn are suitable as flavour symmetry, since they
have one- and two-dimensional irreducible representations. They are sub-
groups of SO(3) and can be described in terms of two generators a and b
that fulfil an = e, b2 = e, and a b a = b with e being the neutral element
of the group. Well-known members of this series of groups are the dihedral
group D4 as well as the permutation group S3 ≃ D3.

The motivation of this model are the anomalies observed in certain
flavour observables, in particular R(D) and R(D⋆) [11], R(D(⋆))=Γ (B→D(⋆)τν)

Γ (B→D(⋆)ℓν)

with ℓ = e, µ, as well as the anomalous magnetic moment of the muon,
∆aµ [12]. In the past years, the evidence for deviations from the SM ex-
pectations has varied and, currently, it seems to be lower. Nevertheless, it
is interesting to consider [9] a simple extension of the SM with one scalar
leptoquark (LQ), ϕ ∼ (3, 1,−1

3) under the SM gauge group, and analyse the
flavour structure required in order to explain these anomalies, while passing
all current experimental limits, e.g. on the radiative charged lepton flavour
violating decays τ → µγ and µ → eγ. An LQ couples simultaneously to
leptons and quarks [13]

Lint
LQ = x̂ij Lc

i ϕ
†Qj + ŷij e c

Ri ϕ
† uRj + h.c. (4)

In order to describe well the mentioned flavour anomalies, we aim at the
following textures of the LQ couplings, with λ = 0.2, [14]:

x ∼

 0 0 0
0 λ3 λ
0 λ2 1

 and y ∼

 0 0 0
0 0 λ3

0 1 0

 , (5)

in the charged fermion mass basis. We note that quark mixing comes from
the up quark sector in this model. Neutrino masses and lepton mixing are
not considered. As flavour symmetry D17 × Z17 is used, since D17 offers
several inequivalent two-dimensional irreducible representations (L ∼ 21,
Q ∼ 22, eR ∼ 23, dR ∼ 24) and a residual symmetry Zdiag

17 is employed to
protect the form of the textures of the LQ couplings, especially the vanishing
of the elements of the first row and column. In order to, at least partially,
unify the three generations of fermions and to account for the heaviness of
the third generation as well as the size of the Cabibbo angle, all are assigned
to 2 + 1, apart from the RH up-type quarks. These are all singlets under
D17, given that the up quark mass hierarchy is the strongest. Furthermore,
the achievement of the texture of y is facilitated. The scalars of the model,
the LQ, and two Higgs doublets, Hu and Hd, are trivial singlets of D17

for simplicity, while the latter carry a non-zero charge under Z17 such that
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the masses of all fermions of the third generation arise at tree level. Four
spurions, S, T , U , and W , are introduced in order to break Gf . These are
all gauge singlets and doublets under D17. The role of S, S ∼ (21, 16)
under D17 × Z17, is to produce the textures of the LQ couplings correctly
with one- to three-spurion insertions. Its vacuum expectation value (VEV)
is aligned as ⟨S⟩ = (λ, 0)T such that Zdiag

17 remains preserved. The spurion
T , T ∼ (22, 8), instead is aligned as ⟨T ⟩ = (λ2, 0)T and it is responsible
for generating the mass of the second generation of down-type quarks and
charged leptons. Similarly, the spurion U , also transforming as (22, 8), gives
masses to the first generation of down-type quarks and charged leptons, since
it is aligned as ⟨U⟩ = (0, λ4)T 1. Finally, the spurion W , W ∼ (22, 12), has a
VEV ⟨W ⟩ = (λ5, λ4)T in order to correctly produce the mass of the charm
quark and the Cabibbo angle. Note that the spurions T , U , and W break the
residual symmetry Zdiag

17 and, thus, should not excessively contribute to the
LQ couplings. The mass of the up quark is generated by an operator with the
spurion combination T 2 U , while the two smaller quark mixing angles come
from the operator Q̄Hu uR3 (S

†)22. Analysing all operators with multiple
spurions that can lead to contributions to the charged fermion mass matrices
and LQ couplings of the order up to and including λ12, we find for the LQ
couplings x, y, and z (derived from x) in the charged fermion mass basis3

x = LT
e x̂Ld =

 a11 λ
9 a12 λ

11 a13 λ
9

a21 λ
8 a22 λ

3 a23 λ
a31 λ

8 a32 λ
2 a33

 , (6)

y = RT
e ŷRu =

 b11 λ
9 b12 λ

9 b13 λ
9

b21 λ
8 b22 λ

3 b23 λ
3

b31 λ
5 b32 b33 λ

4

 , (7)

z = LT
e x̂Lu =

 c11 λ
9 c12 λ

10 c13 λ
9

c21 λ
4 c22 λ

3 c23 λ
c31 λ

3 c32 λ
2 c33

 . (8)

Notably, most of the elements of the first row and column are suppressed,
while the impact of certain entries (y22 ∼ λ3, y31 ∼ λ5, y33 ∼ λ4 as well as
z21 ∼ λ4, z31 ∼ λ3) potentially needs further attention.

1 Two different spurions are introduced instead of only one, as the ratios md/ms and
me/mµ differ and, at the same time, higher-order operators are better controlled.

2 The last point requires, together with the need to correctly produce the Jarlskog
invariant, a slight modification of the up quark mass matrix, see [9].

3 The LQ couplings x̂ and ŷ are in the interaction basis, and the matrices Ld,e,u and
Rd,e,u denote the unitary transformations applied to the different left-handed (LH)
and RH fermion fields.
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An analytical and thorough numerical analysis shows that R(D), R(D⋆),
and ∆aµ can be addressed at the 2 to 3σ level, see Fig. 1, left. At the same
time, the strongest experimental constraint coming from the decay τ → µγ
can be passed, see Fig. 1, right. Furthermore, there are interesting correla-
tions among different processes, see Fig. 2, left, as well as the potential to
test this model at near-future experiments such as muEDM, Fig. 2 right. All
in all, we can conclude that this model is successful in describing the men-
tioned anomalies and can be tested with the help of several other processes.

Fig. 1. Numerical analysis of the flavour observables R(D), R(D⋆), and ∆aµ as
well as the strongest experimental constraint due to τ → µγ. Taken from [9].

Fig. 2. Numerical analysis showing the correlation between the branching ratios of
τ → µγ and τ → 3µ as well as the prospects for measuring the muon electric dipole
moment dµ. Taken from [9].
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4. Low-scale seesaw and ∆(3n2) and ∆(6n2) and CP

Members of the series of groups ∆(3n2) and ∆(6n2) offer three-dimen-
sional irreducible representations and also possess one- and two-dimensional
ones. They are all subgroups of SU(3). The groups ∆(3n2) are conveniently
described by three generators a, c, and d that fulfil a3 = e, cn = e, dn = e,
c d = d c, a c a−1 = c−1d−1 as well as a d a−1 = c with e being the neutral
element [15]. Furthermore, each element g can be written as g = aαcγdδ with
α = 0, 1, 2, 0 ≤ γ, δ ≤ n − 1. In order to get the groups ∆(6n2), a fourth
generator, b, is added which fulfils b2 = e, (a b)2 = e, b c b−1 = d−1, and
b d b−1 = c−1 and all elements g of ∆(6n2) can be written as g = aαbβcγdδ

with α = 0, 1, 2, β = 0, 1 and 0 ≤ γ, δ ≤ n−1 [16]. Well-known members are
the permutation group A4 ≃ ∆(12) and the permutation group S4 ≃ ∆(24).

In addition to a flavour symmetry, one can also consider a CP symmetry,
since it is possible to define CP that also acts on generations of particles in
the case of more than one copy of a certain particle species [17–20], i.e.
Φi(x) → Xij Φ

†
j(xP ) with (xP )µ = xµ, where the matrix X fulfils XX† =

XX⋆ = 1. This CP is an involution and it corresponds to an automorphism
of the flavour symmetry [21–23].

The first purpose of having a flavour and CP symmetry is to break these
in a peculiar way in order to predict lepton mixing angles and all CP phases
in terms of one free real parameter θ only [21]. We keep different residual
symmetries among charged leptons, Ge, and among neutrinos, Gν , and their
mismatch gives rise to lepton mixing. In particular, we choose Ge as an
Abelian symmetry with at least three different elements, with the minimal
choice being Z3, in order to correctly describe three distinct charged lepton
masses. On the other hand, we take Gν = Z2 × CP, since we assume that
neutrinos are Majorana particles and the choice of Gν entails the existence
of θ. We note that fermion masses can be accommodated, but not predicted
in this approach. In the case of the series of groups ∆(3n2) and ∆(6n2) and
CP, only four different types of mixing patterns, Case 1), Case 2), Case 3 a),
and Case 3 b.1), with different properties result that can describe lepton
mixing well [24]. Indeed, for Case 2), the index n = 14 and a certain choice
of CP can correctly produce the lepton mixing angles and predicts that the
Dirac phase is large, i.e. sin δ = −1 for u = 0 and sin δ ≈ −0.811(3) for
u = ±1, for details, see [10, 24].

In [10], we have implemented these types of mixing patterns in a scenario
with a low-scale type I seesaw with three RH neutrinos νRi. The terms
involving these are

L ⊃ i νR /∂ νR − 1
2ν

c
RMR νR − lL YD εH∗ νR + h.c. , (9)
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and the light neutrino mass matrix reads mν = −mDM−1
R mT

D with mD =
YD ⟨H⟩. Concretely, we take the RH charged leptons to be singlets under
Gf (and use an additional Z3 symmetry in order to distinguish between e,
µ, and τ), while we assign LH lepton doublets lLα and RH neutrinos both
to some three-dimensional representation of Gf . We choose lLα as faithful
complex representation such that we can fully explore the predictive power
of Gf and CP, exemplified above. On the contrary, RH neutrinos transform
as in general unfaithful real representation, because we want to write down
a (flavour-universal) mass term for these without breaking Gf and CP. This
mass term only depends on one mass parameter M . Consequently, all break-
ing of Gf and CP is encoded in the Yukawa coupling matrix YD in the neutral
lepton sector. The residual symmetry Ge among charged leptons leads to
their mass matrix being diagonal, whereas in the neutral lepton sector, Gν

determines

YD = Ω(3)Rij(θL) diag(y1, y2, y3)P
ij
kl Rkl(−θR)Ω(3′)† (10)

with Ω(3) and Ω(3′) being fixed by the CP symmetry4. This expression
contains five real free parameters, three corresponding to the light neutrino
masses, one appearing in the lepton mixing matrix (see above), and the last
one, θR, being related to the RH neutrinos. Taking into account a possible
breaking of the residual symmetry Gν (as expected e.g. from an influence
of the charged lepton sector on the neutral lepton one), encoded in the
splitting κ, the RH neutrino masses are not exactly degenerate anymore at
the Lagrangian level, since M1 = M (1 + 2κ) and M2 = M3 = M (1 − κ)5.
As is well-known, in such a scenario, not only light neutrino masses can be
generated, but also the BAU can be produced through leptogenesis. Indeed,
the mentioned splitting κ can be necessary for the successful generation of
the correct amount of the BAU.

In [10], leptogenesis has been studied thoroughly, both analytically and
numerically, for all cases, Case 1) through Case 3 b.1). A large range of RH
neutrino masses, 50MeV ≲ M ≲ 70TeV, and of the splitting κ, 10−20 ≲
κ ≲ 0.1, has been considered. In Fig. 3, left, right, top, and bottom, we
show for Case 1), a certain choice of Gf (n = 10) and CP symmetry (s = 1),
and a fixed value of M , M = 10GeV, several different plots for the BAU,
while varying the other parameters as well as the type of initial conditions.

Furthermore, we observe that the BAU is to a high degree proportional to
− cos(3π s

n) (sin(3π s
n)) for s odd (even), if other parameters are fixed. This

behaviour is confirmed with the help of CP-violating combinations [10] and
is reflected in Fig. 4, left for s odd. We note that the choice of CP symmetry

4 Rij(θL) and Rkl(−θR) are rotation matrices, while P ij
kl is a permutation matrix.

5 In [10], also a splitting which leads to M1 ̸= M2 ̸= M3 has been considered.
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Fig. 3. Numerical analysis showing the BAU for Case 1) and varying different
parameters of the scenario. Taken from [10].

Fig. 4. Numerical analysis showing the BAU for Case 1) depending on the CP
symmetry (parameter s) and the angle θR, respectively. Taken from [10].

also determines the Majorana phase α, | sinα| = | sin(6π s
n)|, while the other

Majorana phase β and the Dirac phase are trivial, see [24]. Eventually, we
show in Fig. 4, right that for certain values of the angle θR, the active-sterile
mixing angle U2 can be large6, enhancing the detection prospects for RH
neutrinos at terrestrial experiments, since e.g. for light neutrino masses with
strong normal ordering (NO), it holds m3 =

y23 ⟨H⟩2
M | cos 2 θR|.

6 Such special values can be related to an enhancement of the residual symmetry, see
for details [10].
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5. Summary and conclusions

Flavour (and CP) symmetries are very useful for understanding fermion
mixing and potentially also fermion masses. They also have considerable
effects on other observables in extensions of the SM. We have presented two
examples: a model with an LQ which explains the flavour anomalies found
in R(D), R(D⋆), and ∆aµ, while passing all other experimental bounds and
making testable predictions as well as a scenario with low-scale type I seesaw
that has strongly degenerate RH neutrino masses and where the generation
of the BAU is possibly correlated with the low-energy CP phases, contained
in the lepton mixing matrix. Possible future directions could be the study
of neutrino masses and lepton mixing in the model with the LQ and the
exploration of further phenomenology of the RH neutrinos as well as the
analysis of variants of the low-scale type I seesaw mechanism. Furthermore,
one can think about embedding these examples in larger frameworks and
obviously apply flavour (and CP) symmetries to more extensions of the SM.
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