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We discuss recent developments in descriptions of processes using power
expansion around the lightcone within the Soft-Collinear Effective Theory.
First, we present an overview of the systematically improvable framework
that enables factorization of high-energy scattering processes beyond lead-
ing power in the expansion in ratios of energy scales. As an illustration of
the relevant concepts, we describe the recently derived factorization the-
orem for the off-diagonal channel of the Drell–Yan production process at
threshold. This example exposes endpoint divergences appearing in con-
volution integrals in factorization formulas. Lastly, we discuss the solution
to these complications developed in the context of “gluon thrust” in e+e−

collisions.
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1. Introduction

Factorization theorems describing the decoupling of physical phenom-
ena occurring at disparate energy scales and knowledge of universal objects
governing singular limits of scattering processes are integral in enabling ac-
curate theoretical predictions in collider physics. Perhaps the best-known
example is the factorization of sufficiently inclusive scattering cross sec-
tions in hadronic collisions into perturbatively calculable short-distance part
and parton distribution functions (PDFs), which capture the low-energy be-
haviour [1]. Despite the long history, most factorization theorems are for-
mulated only at the leading power (LP) in the expansion in ratios of the
disparate energy scales. Focusing on efforts utilising effective field theory
methods, in this contribution, we discuss the recent advancements made
towards descriptions valid at subleading powers.
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Studies of subleading power corrections are important for phenomenolog-
ical applications [2, 3]. As has been shown recently for the case of inclusive
Higgs production via gluon fusion, the size of the leading logarithmic (LL)
corrections at next-to-leading power (NLP) can rival those of next-to-next-
to-leading logarithmic (NNLL) at leading power [3]. Therefore, if towers
of leading power logarithms are included to high logarithmic accuracy, the
subleading power logarithms should also be included at least at the LL order
to maintain control over the genuine size of the errors in the predictions.

On top of the phenomenological applications, investigations of power
corrections present also an intriguing challenge from the theoretical per-
spective and plenty of work has recently been carried out on this topic in
various contexts. A non-exhaustive list of recent studies includes investiga-
tions of Higgs production in gluon fusion at threshold, deep-inelastic scatter-
ing (DIS) at large Bjorken-x, hadronic e+e− annihilation, and the threshold
Drell–Yan (DY) process [2–20]. Furthermore, studies have been carried out
for the single Higgs boson production and decay amplitudes [21–34]. Ad-
vancements beyond leading power have also been achieved for variables such
as N -jettiness [35–41], the qT of the Higgs boson or the lepton pair [42–46],
and in the context of QED [47–52], and B physics [53–57].

We begin by giving a brief overview of the general subleading power
considerations within the Soft-Collinear Effective Theory (SCET) [58–62].
Namely, we discuss the basis of subleading power operators, the expanded
Lagrangian with power suppressed soft-collinear interactions, and process
specific kinematic power corrections. In order to illustrate the relevant con-
cepts in a concrete example, we will focus on the recent derivation of next-
to-leading power factorization formula for the quark–gluon channel of the
Drell–Yan production process at threshold presented in [10]. The obtained
results expose the presence of endpoint divergences, which is a ubiquitous
complication appearing in various subleading power factorization theorems.
In the last part of this contribution, we will discuss a solution to this problem
in the context of “gluon thrust” in e+e− collisions using refactorization [16].

2. Sources of power corrections

In the following discussion, we adopt the subleading power SCET for-
malism developed in [63–68]1. SCET describes the dynamics of soft and
collinear partons. The collinear partons contain a large momentum compo-
nent along one light-like direction and are suppressed along the remaining
ones. It is convenient to use light-like reference vectors nµi− and nµi+ satisfy-
ing ni− · ni+ = 2 and n2i− = n2i+ = 0 for each of the collinear directions i.

1 For an alternative approach of constructing power-suppressed operator basis in the
label formulation of SCET, see [69–72].



Lightcone Expansion Beyond Leading Power 2-A5.3

In the first step, hard modes are integrated through a procedure which
matches QCD to a basis of the SCET operators. The SCET operators are
constructed out of collinear gauge-invariant building blocks [73]

ψi(x) ∈

 χi(x) =W †
i (x)ξi(x) i-collinear quark ,

Aµ
i⊥(x) =W †

i (x)
[
iDµ

i⊥Wi(x)
]

i-collinear gluon ,
(2.1)

where ξi(x) =
/ni−/ni+

4 ψi(x), iD
µ
i (x) = i∂µ + gsA

µ
i (x), and the Wilson line is

defined in (2.6) of [7]. Up to O(λ2), a generic N -jet operator is [64]

J =

∫ [∏
ik

dtik

]
C({tik})

N∏
i=1

Ji(ti1 , ti2 ...) , (2.2)

where C({tik}) is a generalised Wilson coefficient which captures the hard
modes and Ji is a product of ni collinear building blocks associated with
a collinear direction nµi+: Ji(ti1 , ti2 ...) =

∏ni
k=1 ψik(tikni+). Each of the

collinear building blocks in (2.1) has a scaling of O(λ) [61], where λ is the
small power counting parameter of the theory and its specific form is dic-
tated by the process under consideration. In the LP configuration, there is a
single building block present in each of the collinear directions, as depicted
in an N -jet example in panel (a) of figure 1. There are two ways to extend
the basis of operators to subleading powers [64]. The first is through the in-
troduction of ∂µ⊥ derivatives which act on the building blocks already present
at LP, bringing an O(λ) suppression. For example, JA1

i (ti) = i∂µi⊥χi(tini+)
as shown in panel (b) of figure 1. Secondly, additional building blocks can be
added within each collinear direction. Since the building blocks scale as λ,
each insertion induces an O(λ) suppression. Examples of this are shown
in panels (c) and (d) of figure 1, where JB1

i (ti1 , ti2) = Aµ
i⊥(ti1ni+)χi(ti2ni+)
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Fig. 1. Panel (a) shows a LP N -jet operator with one building block present in
each of the N collinear directions, and panels (b), (c), and (d) depict possible
power corrections, as described in the text.
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and JC2
i (ti1 , ti2 , ti3) = Aµ

i⊥(ti1ni+)A
µ
i⊥(ti2ni+)χi(ti3ni+). The basis is organ-

ised into currents JAn, JBn, JCn, . . . where the letters A,B,C, . . . denote
the number of fields present in a particular collinear direction, and the num-
ber n gives the overall power suppression with respect to the LP operator in
each sector. The sum of the power suppression from the different collinear
sectors gives the overall power suppression for the N -jet operator. Next, we
consider the SCET Lagrangian for QCD which is separated into N collinear
parts and a global soft term, with Lagrangian terms in the collinear sectors
are each systematically expanded in a small power counting parameter λ

LSCETI
= Ls +

N∑
i=1

Li , Li = L(0)
i︸︷︷︸

O(λ0)

+ L(1)
i︸︷︷︸

O(λ1)

+ L(2)
i︸︷︷︸

O(λ2)

+ . . . (2.3)

The first term in the expansion, L(0)
i , is the LP contribution, and the remain-

ing terms are the power corrections. The specific form of the Lagrangian
expanded to O(λ2) is given in [62]. Following [64], we adopt the interaction
picture such that all operator matrix elements are evaluated with the LP
SCET Hamiltonian, and the subleading power Lagrangian terms enter the
basis as perturbations through time-ordered product insertions with lower
power currents. At O(λn+m), the time-ordered product operators take the
form: J

T (n+m)
i (ti) = i

∫
ddxT

{
JAn
i (ti)L(m)

i (x)
}
. Lastly, the power sup-

pression can enter via the so-called kinematic correction. This type of cor-
rection is process-specific and it originates in the phase-space approximations
which are valid only up to LP. The kinematic correction is made up of ap-
propriately expanding the phase space to subleading power accuracy. See [6]
for an example in the case of DY production at threshold.

3. Threshold factorization of the Drell–Yan quark–gluon channel

Using the general construction outlined in the previous section, we now
focus on the DY process at threshold and set the number of collinear direc-
tions N = 2. The threshold limit is characterised by z ≡ Q2/ŝ → 1, where
Q2 is the invariant mass of the final-state lepton pair, and ŝ is the partonic
centre-of-mass energy squared. Specifically, we consider the off-diagonal
processes gq̄ (qg) → γ∗ +X. The derivation of the subleading power factor-
ization theorem for this process has recently been presented in [10, 74]. In
this contribution, we discuss important considerations and the key features.
For details, we refer the interested reader to [10] where all the necessary
ingredients to validate the NLP factorization to NNLO were computed.
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We consider the invariant mass distribution for the Drell–Yan process

dσDY

dQ2
= σ0

∑
a,b

1∫
τ

dz

z
Lab

(
τ

z

)
∆ab(z)+O

(
Λ

Q

)
, σ0 =

4πα2
em

3NcQ2s
, (3.1)

where Lab(y) is the standard parton luminosity function, τ = Q2/s, and Λ is
the confinement scale of QCD. We seek to obtain the factorization theorem
for the partonic part ∆gq̄(z).

In the threshold limit, the final state contains only soft radiation and
the hard matching to SCET operators is performed at amplitude level. In
this limit, for the process gq̄ → γ∗+X to occur, the incoming gluon drawn
from the PDF must be converted to a threshold collinear quark via the
emission of a soft antiquark. The interaction between collinear fields and
soft quarks is inherently a subleading power effect appearing for the first
time in the SCET Lagrangian at O(λ) in L(1)

ξq = q̄+/A(0)
c⊥χ

(0)
c , where the

decoupling transformation [60] was performed and χ
(0)
c (z) = Y †

+(z−)χc(z),
A(0)µ

c (z) = Y †
+(z−)Aµ

c (z)Y+(z−), q± = Y †
± qs with the soft Wilson lines de-

fined in Eq. (2.4) of [7]. Hence, in contrast to the qq̄-channel, the contribu-
tion due to the gq̄-channel appears for the first time at NLP. It occurs via
a time-ordered product insertion of L(1)

ξq with the LP current. The deriva-
tion of the factorization theorem proceeds as follows. The matching of the
electromagnetic quark current to SCET fields is carried out at LP using

ψ̄γρψ(0) =

∫
dtdt̄ C̃A0,A0 (t, t̄ ) JA0,A0

ρ (t, t̄ ) , (3.2)

where, after decoupling, in the notation for N -jet operators described above,
we get

JA0,A0
ρ (t, t̄ ) = χ̄c̄ (t̄n−)Y

†
−(0)γ⊥ρY+(0)χc(tn+) . (3.3)

We suppressed the superscript (0) on decoupled fields in the equation above.
Power suppression is then generated via the aforementioned time-ordered
product insertions of L(1)

ξq . These insertions give rise to a new feature in
subleading power factorization theorems with respect to their LP counter-
parts. Namely, the additional collinear fields introduced via time-ordered
product insertions are too energetic to enter the final state in the threshold
kinematics. Therefore, an amplitude level matching to PDF-collinear fields
must first be performed giving rise to NLP collinear functions [6–8]. For
the case of gq̄-channel of DY, the matching is done onto the PDF-collinear



2-A5.6 S. Jaskiewicz

gluon which gives rise to the following collinear matching equation [10, 74]:

i

∫
ddz T

[
χc,γf (tn+) L(1)

ξq (z)
]
=

2π

gs

∫
dω

2π

∫
dn+p

2π
e−i(n+p)t

∫
dn+pa
2π

×Gη,A
ξq;γα,fa (n+p, n+pa;ω) ÂPDFA

c⊥η (n+pa)

∫
dz− e−iω z− sξq;α,a(z−) . (3.4)

In the above equation, η is a Lorentz index, α and γ are Dirac indices,
and a, f , and A are fundamental and adjoint colour indices respectively.
The soft structure, sξq, originates from L(1)

ξq . Making the indices explicit,
it reads sξq;α,a(z−) = gs

in−∂z
q+α,a(z−) . After this step, the derivation of the

factorization formula proceeds in the standard manner. The amplitude is
squared, and the sum over the PDF-(anti)collinear state is carried out. The
matrix element of the PDF-(anti) collinear fields is expressed in terms of
the standard PDFs. The gq̄ contribution to DY begins at NLP, so the
phase space can be truncated at LP. The final NLP factorization formula
can be simplified using generic properties of the collinear function as given
in equation (2.30) of [10] which introduced a scalar version of the collinear
function Gξq(n+p;ω). After some further manipulations, we find [10]

∆gq̄|NLP(z) = 8H
(
Q2

) ∫
dω dω′G∗

ξq

(
xan+pA;ω

′)
×Gξq(xan+pA;ω)S

(
Ω,ω, ω′) . (3.5)

In this equation, H(Q2) is the well-known LP hard function, given by the
square of the LP short-distance coefficient. The soft function S(Ω,ω, ω′)
is given in (2.35) of [10]. A pictorial representation of the result in (3.5)
is presented in figure 2. This concludes our overview of the derivation of
the factorization theorem for the off-diagonal channel contribution to DY
at NLP. Keeping the dimensional regulator in place, this result has been
validated up to NNLO in [10] via an explicit computation of each of the
ingredients appearing in the above result to the required perturbative ac-
curacy: soft functions to O(α2

s ), collinear functions at O(αs).2 The hard
function is known up to three-loops [76]. Using the obtained results, it is
also possible to expose the endpoint divergences appearing in this example.
Namely, focusing on the collinear and soft piece, we have

Ω∫
0

dω
(
n+pω

)−ϵ︸ ︷︷ ︸
collinear piece

1

ω1+ϵ

1

(Ω − ω)ϵ︸ ︷︷ ︸
soft piece

. (3.6)

2 Equivalent collinear functions were calculated to O(α2
s ) for H → gg amplitude in [75].
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G∗
G

A A

B B

γ∗ γ∗A0 A0∗

ω ω′

Fig. 2. Schematic representation of the factorization theorem in (3.5). The red
lines represent soft fields, blue (green) lines represent (anti)collinear fields. The
LP short-distance coefficient CA0 and its complex conjugate are the purple circles
labelled “A0” and “A0∗”, respectively. NLP collinear functions are represented by
the blue ovals denoted by G, G∗. Lastly, ω and ω′ are the convolution variables
between the soft and collinear functions.

It is apparent that the integral is well defined when exact ϵ dependence
is retained in the integrand. However, if the soft and collinear pieces are
first expanded individually in the context of resummation, it is clear that
a divergent integral is encountered. Namely, in this case, we find a term
proportional to

∫
dωδ(ω) ln(ω). Therefore, the standard renormalization

procedure and four-dimensional convolutions do not, in general, yield the
correct structure of the NLP logarithms of (1 − z). In the gq̄-channel, the
issue arises already at the LL level, whereas it appears for the first time
at NLL in the diagonal channels [7]. As mentioned in the introduction,
the appearance of endpoint divergences in subleading power factorization
theorems is a ubiquitous issue studied in a variety of contexts [11, 14, 16,
26, 30–32, 47, 55–57, 77]. In the next section, we discuss a solution for this
problem using refactorization ideas developed for “gluon thrust” [16].

4. Refactorization in “gluon thrust”

We now switch focus to e+e− collisions and consider the “gluon thrust”
event shape where at leading order, the gluon recoils a quark–antiquark pair

e+e− → γ∗ → [g]c + [qq̄ ]c̄ . (4.1)

The thrust variable T is defined as [78, 79]: T = maxn⃗
∑

i|p⃗i·n⃗|∑
i|p⃗i|

, where the in-
dex i runs over the final-state hadrons (partons). In the limit τ = 1− T → 0,
back-to-back jets are formed by the partons, and large logarithms in the τ
variable appear at all orders in αs. The quark–antiquark two-jet process
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contributing at LP in the τ expansion is known to high logarithmic ac-
curacy [80]. Comparatively, much less is understood about the process in
Eq. (4.1) beginning at NLP in the τ expansion with the leading term αs ln τ .

At the first order in αs, the gluon jet can be induced in two ways: (I) The
large anti-collinear momentum can be carried away by both the quark and
the anti-quark, which creates a single jet that recoils against the collinear
gluon. (II) The collinear gluon momentum is balanced by either the anti-
collinear quark or anti-quark, which renders the remaining fermion soft.

From the SCET point of view, in situation (I), the qq̄g state is directly
produced by hard scattering operator, see Section 2. Due to the subleading
operator involved, we refer to this situation as the B-type scenario and it is
depicted in the left diagram of figure 3. In this case, momentum conservation
fixes only the total momentum of the qq̄ pair. The amplitude depends on
the fraction of the anti-collinear momentum carried by each particle. If one
of these fractions becomes small, the corresponding parton becomes soft and
must instead be counted as possibility (II), also referred to as the A-type
scenario. In this contribution, the hard scattering vertex is the LP current
and the full momentum of the quark (or anti-quark) is then transferred to
the gluon, which renders the daughter fermion soft. Following the discussion
in Section 2, this situation is captured by a time-ordered product insertion
of L(1)

ξq which describes soft (anti-)quark emission. The A-type scenario is
shown in the middle and right diagrams of figure 3.

γ∗(Q)

gc(pg)

q̄c̄(pb)

qc̄(pa)CB1

γ∗(Q)

gc(pg)

qs(pa)

q̄c̄(pb)

L(1)
ξq

CA0

γ∗(Q)

gc(pg)

q̄s(pb)

qc̄(pa)

L(1)
ξq

CA0

Fig. 3. SCET representation of the “gluon thrust” amplitude.

We begin with the factorization theorem for two-hemisphere invariant
mass distribution of “gluon thrust” in Laplace space

1

σ0

d̃σ

dsRdsL
=

∫
dωdω′ ∣∣CA0

∣∣2 × J (q̄)
c̄ × Jc

(
ω, ω′)⊗ SNLP

(
ω, ω′)

+

∫
drdr′CB1(r)CB1

(
r′
)∗ ⊗ J qq̄

c̄

(
r, r′

)
× J (g)

c × S(g) . (4.2)
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C denotes the hard matching coefficients, J stands for the jet functions,
and S for the soft functions. Only the dependence on convolution variables
which give rise to divergent integrals is retained. The r, r′ convolution
integrals diverge logarithmically for r, r′ → 0, 1, and the ω,ω′ convolutions
for ω, ω′ → ∞.

The soft quark from scenario (II) is contained in SNLP. In the overlap
region, soft momentum ω carried by the soft quark is actually large and
could count as part of J qq̄

c̄ , with a small anti-collinear momentum fraction r.
Removing this quark from SNLP reduces it to S(g). Hence, taking all these
changes into account, the hard process effectively changes from A0-type to
B1-type. In these limits, we can identify r = ω/Q, r′ = ω′/Q, such that the
integrands of the two terms in (4.2) become identical. We can then perform
a rearrangement at the integrand level, such that both terms are individually
finite. From this stage, standard RG techniques can be employed to resum
the logarithms in the hard, jet, and soft functions. Details of this procedure
are presented in [16] which we summarize below.

The rearrangement of endpoint-singular terms is achieved by the intro-
duction of the scaleless integral

2CF

Q
f(ϵ) |CA0|2J̃ (q̄)

c̄ J̃ (g)
c

∞∫
0

dωdω′ D
B1

ω

DB1∗

ω′

r
S̃NLP

(
sR, sL, ω, ω

′)z , (4.3)

where we have suppressed the arguments in the DB1 functions defined in
Eq. (57) of [16]. This integral is split into two terms I1,2, I1 + I2 = 0, with
I1 defined by ω or ω′ smaller than a parameter Λ and I2 as the complement
region, as depicted on the left-hand side of figure 4.

ω′

Q

Λ

ωQΛ

I1

I2

τQ

τQ

✵�✵✵ ✵�✵✁ ✵�✂✵ ✵�✂✁ ✵�✄✵ ✵�✄✁ ✵�☎✵

✵�✵✵

✵�✵✁

✵�✂✵

✵�✂✁

✶✴✆◗ s ❡
✝❊ ✮

✞

✟
✠✡
☛
❞
✡
✠

☞

❞
✟

▲✌

❧✍✎✏✑✒✲✓✔

▲▲

Fig. 4. The left panel shows the split of (4.3) into I1 + I2 in the ω–ω′ plane as
described in the text below Eq. (4.3). The right panel, displays the Laplace-space
gluon thrust distribution at LL. The light red band is created by the variation of
the initial scales as described in the text.
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The endpoint rearrangement entails subtracting I1 from the B-type con-
tribution and I2 from the A-type. The resulting expressions are separately
endpoint-finite. The dependence on Λ cancels exactly between the two terms
if no further approximations are made. The RG equations for the objects
appearing in the factorization formulas can now be solved as presented in de-
tail in Sections 5.1 and 5.2 of [16]. The end result for the leading logarithmic
accurate resummed expression in the Laplace space is

1

σ0

d̃σ

dsRdsL

∣∣∣
LL

= 2 · 2CF

QsR

αs(µc)

4π
exp [4CFS (µh, µc̄) + 4CAS (µs, µc)]

×
(

1

sLsRe2γEµ2s

)−2CAA(µs,µc)
Q∫

σ

dω

ω

(
ω

sReγEµ2sΛ

)−2(CF−CA)A(µsΛ,µhΛ)

×
(
Q2

µ2h

)−2CFA(µh,µc̄)

e[4(CF−CA)S(µsΛ,µhΛ)](sRe
γEQ)2CFA(µhΛ,µc̄)+2CAA(µc,µhΛ) .

(4.4)

The functions S (ν, µ) and Aγi (ν, µ) are defined in [81]. To study the im-
portance of NLL corrections, we vary the matching scales around the values
adopted in (4.4). Three pairs of scales are varied (µh, µhΛ), (µc, µc̄), (µs, µsΛ)
by a factor of 1/2 and 2. Scale variation is computed by taking the resulting
minimum and maximum values. The effect of this procedure is shown for
Qs
σ0

d̃σ
ds in the right-hand panel of figure 4 as the light red band around the

red curve (LL) which represents (4.4). We also display the LO and linear-β0
truncation of the LL expression for comparison. The sizeable scale variation
emphasizes the necessity of resummation at the NLL order. The endpoint-
rearranged factorization formula derived in [16] provides the starting point
for this systematically improvable analysis.

5. Summary

In this contribution, we highlighted the recent progress made towards
achieving descriptions of factorization of physical scattering processes valid
beyond leading power in the expansion in ratios of energy scales. In Sec-
tion 2, we presented an overview of the SCET formalism which enables the
systematic inclusion of subleading power corrections in these processes. In
Section 3, we discussed the relevant concepts based on a concrete example
of the factorization formula recently derived for the off-diagonal channel of
the DY process at threshold. Using the relevant results, we discussed the
appearance of endpoint divergences, and finally, we reviewed the recently
developed solution in the context of “gluon thrust” in e+e− collisions. As



Lightcone Expansion Beyond Leading Power 2-A5.11

is evident, studies of subleading power corrections present intriguing chal-
lenges from the theoretical perspective and are phenomenologically relevant
for the upcoming precision era of the LHC and the Electron–Ion Collider.
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