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The consistent combination of Next-to-Leading-Order (NLO) pertur-
bative QCD with the logarithmic resummation of parton shower algo-
rithms (‘NLO matching’) is a workhorse of precision QCD in the LHC
era. Two methods for achieving this have been widely adopted: Mc@Nlo
and Powheg. The differences between them are formally Next-to-Next-
to-Leading-Order (NNLO) and therefore irrelevant for NLO accuracy, but
are nevertheless numerically significant for certain processes and observ-
ables. We summarise a third method, KrkNLO, and present preliminary
phenomenological results from its implementation in Herwig 7.
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1. Introduction

The central objective of ‘NLO matching’ is to produce predictions for
exclusive high-multiplicity observables (e.g. events with a definite number
of observed jets) from an inclusive, low-multiplicity fixed-order NLO calcu-
lation, retaining the perturbative accuracy of the latter (up to power cor-
rections) but augmenting it with the logarithmic resummation of a parton
shower to provide the flexibility of exclusive predictions. This has been
solved in general by the Mc@Nlo [1] and Powheg [2–4] methods.

The KrkNLO method was introduced in [5–7] and the results of a pre-
liminary implementation presented for the Drell–Yan and gluon-fusion Higgs
production processes in [6, 7]. Here, we extend the implementation to the
diphoton process as a stepping stone to a general automated implementation
for all colour-singlet final states.
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2. The KrkNLO method

The KrkNLO method was introduced in [5–7] and solves the NLO match-
ing problem in a fundamentally different way to its counterparts, exploiting
the general freedom to choose a factorisation scheme for parton distribution
functions (PDFs) for QCD calculations at NLO and higher. Differences be-
tween alternative matching methods, whilst formally higher-order, may be
probed to clarify the ‘matching uncertainty’ implied by the choice of any
single method.

The KrkNLO method may be summarised succinctly as:

for all Born events do shower
if emission generated, from kernel (α) then

w ← w × R(Φm+1)

P
(α)
m (Φm+1)

else
w ← w ×

[
1 + αs(µR)

2π

(
V (Φm;µR)
B(Φm) + I(Φm; µ̃R)

B(Φm) +∆FS
0

)]
end if

end for

The parton shower is then allowed to run to completion. Further details
are available in [8].

Here, Φm denotes the Born phase space and Φm+1 the real-emission phase
space. B, R, and V denote the relevant Born, real, and virtual matrix ele-
ments, respectively; P (α)

m the emission kernel used in the shower algorithm
to generate the chosen branching of generalised type (α); µR the renormal-
isation scale, and I the contribution from the shower Sudakov, integrated
over the radiative phase space, containing no residual collinear dependence.

This achieves NLO accuracy only when combined with a modification of
the PDF factorisation scheme from the usual MS scheme into the so-called
‘Krk’ scheme [9]. This scheme has so far been formulated only for colour-
singlet final states. The transformation between the schemes is defined by
the requirement that it compensate for the additional collinear terms gener-
ated at O(αs) by the parton shower, which cannot be removed by a simple
multiplicative reweighting. This uniquely defines the collinear x-dependence
of the scheme transformation, but does not fix so-called ‘virtual’ terms pro-
portional to δ(1− x) which must be fixed by a chosen convention, such as a
sum rule [9]. Here, we denote this choice by ∆FS

0 . Formally, the change in
scheme is O(αs), so the Krk scheme can also be used for LO calculations.

In order for the full real-emission phase space Φm+1 to be populated by
the reweighted first shower emission, the shower must be constructed to have
full phase-space coverage (i.e., no ‘dead zones’). This can be relaxed using
the Mc@Nlo method to fill in the remaining phase space [10].
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Numerically, the KrkNLO procedure shares with Powheg the advantage
of generating no negative-weighted events. These arise in the Mc@Nlo
method due to its use of subtracted, and potentially over-subtracted, events
in the hard process. Unlike Powheg, in KrkNLO, this is achieved without
requiring the modification of the shower kernel (and by consequence, the
Sudakov factor) for the first parton-shower emission.

3. KrkNLO in Herwig 7

Herwig 7 [11–13] is a multi-purpose Monte Carlo Event Generator which
provides NLO QCD predictions, matched automatically and consistently to
either the dipole [14, 15] or the angular-ordered shower [16], using either the
Mc@Nlo or Powheg methods, within the Matchbox module [15].

The KrkNLO method is implemented within Herwig 7 separately from
the Matchbox methods, as a reweight within the DipoleShower class, cur-
rently for a subset of the possible processes. The diphoton process has been
implemented manually as an intermediate step to full automation. It has
been validated numerically by numerically calculating, and unweighting by,
the Sudakov factor generated by the veto algorithm [17–19] and compar-
ing the resulting distributions numerically to the fixed-order real-emission
matrix element.

Separately, the virtual matrix elements have been tested, both at the
phase-space point level and at the level of distributions, against MadGraph
[20] and OpenLoops [21]; the Krk factorisation scheme PDF convolution
has been tested numerically against the automated implementation of the
Catani–Seymour P and K operators within Matchbox.

4. Diphoton phenomenology

We present results for the KrkNLO method compared against fixed-order
NLO and the Mc@Nlo method, both after the shower has been allowed to
generate at most one emission and after the shower has been allowed to run
to completion.

We use fiducial cuts corresponding to an idealised Atlas 13 TeV set-up
[22], using smooth-cone (‘Frixione’) isolation [23] with the ‘tight’ isolation
parameters of the 2013 Les Houches Accords [24] in place of the experimental
isolation and fiducial cuts:

pγ1T > 40 GeV , pγ2T > 30 GeV , (1a)
∆Rγγ > 0.4 , |yγ | ∈ [0, 2.5) , (1b)

Eiso,part
T < 0.1 pγT within cone ∆R ⩽ 0.4. (1c)
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Jets are clustered using the anti-kT algorithm [25] with a radius of 0.4 and,
for jet distributions, are identified as a jet if pjT > 1 GeV and |ηj | < 5. The
cuts are applied to the final state produced by the generator using Rivet [26].

The Mc@Nlo and fixed-order comparisons are generated using Match-
box within Herwig 7, with tree matrix-elements computed by MadGraph [20]
and loop matrix-elements by OpenLoops [21]. The renormalisation and fac-
torisation scales are set as µR = µF = Mγγ . Where the Herwig dipole shower
is used, the shower cut-off is set at pcutT = 1 GeV and the starting scale is
either Mγγ (the default) or unrestricted (i.e., a ‘power’ shower [27, 28]).
As explained in Section 2, for KrkNLO, the shower starting scale must be
unrestricted to ensure full coverage of the real-emission phase space.

We use CT18NLO PDFs [29], either in the MS scheme or transformed
into the Krk scheme for the KrkNLO calculation, and accordingly adopt
αs(MZ) = 0.118.

In Fig. 1, it can be seen that the magnitude of the Sudakov suppression
in the low-pjT region is the dominant source of the differences between the
Mc@Nlo and KrkNLO predictions, just as it is the dominant source of the
differences between Mc@Nlo and fixed-order NLO. The methods converge
at high-pjT. Within KrkNLO, this arises because the real-emission matrix
element is always accompanied by the shower Sudakov factor ∆

∣∣Q(Φm)

pT,1
, since

the real-emission phase-space point Φm+1 is generated by the shower algo-
rithm starting from a Born event; within Mc@Nlo, the real-emission matrix
element is generated independently and so has no accompanying Sudakov
factor. This discrepancy is distributed unevenly over phase space and for
some distributions leads to significant differences between the methods.

The dσ/dpγT distributions can be seen to agree well between fixed-order
NLO and Mc@Nlo, with KrkNLO 10–30% lower; for the dσ/dpγ1T distri-
bution, the predictions all converge above 100 GeV, whereas for dσ/dpγ2T ,
the Sudakov suppression remains relevant at higher values of pγ2T . The spike
in the fixed-order NLO prediction around pγ2T = 40 GeV is an unphysical
artefact of perturbation theory due to soft gluon emission allowed as a con-
sequence of the asymmetric phase-space cuts on the photons [30, 31].

In Figs. 2 and 3, it can be seen that some of these discrepancies become
less significant as the shower evolution proceeds. For the dσ/dpγT distribu-
tions (cf. Fig. 3), there is good agreement between the KrkNLO and the
‘default’ Mc@Nlo prediction in which the starting scale of the shower is
taken to be Mγγ , whereas the ‘power’ shower with no upper bound on the
radiative phase space gives substantially larger predictions for high-pγ1T .

At large pjT (cf. Fig. 2), the KrkNLO method gives smaller predictions
than the default Mc@Nlo by approximately 40%; this becomes of a com-
parable magnitude to the deviation between ‘default’ and ‘power’ shower
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Fig. 1. ‘Parton level’ (first-emission) comparison of KrkNLO with Mc@Nlo, NLO
fixed-order, and the corresponding first-emission distributions generated by the
parton shower with a leading-order calculation. The shower in each case is a ‘power
shower’, i.e. with no phase-space restrictions.
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Fig. 2. ‘Full shower’ comparison of KrkNLO with Mc@Nlo and distributions re-
lated to the jet momenta or momentum of the diphoton system generated by the
parton shower when combined with a leading-order calculation.

Mc@Nlo for pjT ≳ 150 GeV. The dσ/dMγγ distribution (cf. Fig. 2) shows
generally good agreement between the methods where they have NLO ac-
curacy, with a region of disagreement arising below the boundary of the
Born phase space at Mγγ = 80 GeV in which the two predictions are effec-
tively accurate to leading-order only. At the lower edge of the permissible
phase space, the two photons each attain their lower-bound pcutT and with
∆Rγγ ≈ 0.4 recoil against a harder jet; the behaviour of the predictions in
this region is similar to that implied by the tail of the dσ/dpj1T distribution.

The azimuthal separation of the photons dσ/d∆ϕγγ (cf. Fig. 3) shows
reasonable agreement between the KrkNLO and Mc@Nlo (default) meth-
ods; interestingly, as the KrkNLO method uses an unrestricted phase space
like the Mc@Nlo ‘power’ shower, the resulting shape is retained but the nor-
malisation remains consistent, to within 10–20%, with (default) Mc@Nlo.
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Fig. 3. ‘Full shower’ comparison of KrkNLO with Mc@Nlo in both ‘default’ and
‘power’ shower configurations, and the photon distributions generated by the par-
ton shower when combined with a leading-order calculation.

The comparison of differential cross sections as predicted by these meth-
ods, and compared where possible with Atlas data, is performed in further
detail in [8]. However, for processes such as diphoton production, the open-
ing of new partonic channels at NNLO (as well as the phase space available
to soft gluons due to asymmetric photon cuts) makes NNLO corrections
[32–35] vital for the accurate description of experimental data, which is
therefore unattainable by any NLO matching method. Assessments of the
significance of the choice of matching method and resulting uncertainties
for LHC phenomenology based on comparisons to experimental data must
therefore await the further development of the KrkNLO method for other
processes.
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5. Conclusions

In these proceedings, we have given a brief account of the KrkNLO
method for the matching of NLO fixed-order calculations to parton showers.
We have outlined its implementation in Herwig 7 and presented and sum-
marised results illustrating the impact of the choice of matching scheme, and
the higher-order corrections implicit in the choice of any single scheme, upon
the phenomenology of the predictions generated for diphoton production at
the LHC. A more detailed account is available in [8].

We anticipate that code allowing the calculation within the KrkNLO
method of predictions for further colour-singlet processes will be made avail-
able in a future public release of Herwig 7, as a result of which it will be
possible to further study the significance of the choice of matching scheme
for LHC physics.
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