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Predictions for processes involving soft photons, up to next-to-leading
power (NLP) in the photon energy, can be obtained using the Low–Burnett–
Kroll (LBK) theorem. The consistency of the theorem has been a recent
topic of investigation since it is traditionally formulated in terms of a non-
radiative amplitude, which is evaluated with unphysical momenta. We
address such questions and propose a formulation of the LBK theorem
which relies on the evaluation of the non-radiative amplitude with on-shell,
physical momenta. We use this form to numerically study the impact of
NLP contributions to cross sections for pp and e−e+ processes involving
soft-photon emission.

DOI:10.5506/APhysPolBSupp.17.2-A8

1. Soft-photon anomaly

The theoretical framework of radiation in the low-energy (i.e. soft) limit
is based on soft theorems, which enable the computation of radiative pro-
cesses solely from the knowledge of the non-radiative amplitude and the
external momenta. In QED, this universal factorization persists at next-to-
leading power (NLP) in the soft-photon energy, as derived long ago by Low,
Burnett, and Kroll (LBK) [1, 2]. Specifically, for an unpolarized cross sec-
tion and keeping only the leading-power (LP) term in the soft expansion, the
soft theorem relates the radiative amplitude A(p, k) and the non-radiative
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amplitude H(p) via

|A(p, k)|2 = −

 n∑
ij=1

ηiηjQiQj
pi pj

(pi k)(pj k)

 |H(p)|2 , (1)

where ηi is +1(−1) for incoming (outgoing) particles.
However, the data gathered in several hadronic experiments [3–5] show

a disagreement with the above formula, with an excess of photons that
ranges between 4 and 8 times the theoretical predictions. Furthermore, there
are plans to upgrade the ALICE detector [6, 7] with the aim of measuring
ultra-soft photons. In light of this long-standing puzzle and proposed future
measurements, further theoretical studies of soft-photon emissions are thus
necessary. In particular, it is interesting to estimate the impact of NLP
corrections to Eq. (1), as given by the LBK theorem.

2. Soft-photon emission via the LBK theorem

The diagrammatic derivation of the LBK theorem consists of discrimi-
nating the radiative amplitudes Aµ

ext and Aµ
int, corresponding to radiation

coming from the external lines and internal lines, respectively, as shown in
Fig. 1 (b) and 1 (c). While the contribution from the former can be straight-
forwardly derived, internal radiation can be computed using gauge invari-
ance, which yields

A = εµ
(
Aµ

ext +Aµ
int

)
=⇒ kµ

(
Aµ

ext +Aµ
int

)
= 0 . (2)
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Fig. 1. Diagram (a) corresponds to the amplitude for a general non-radiative pro-
cess, with N initial particles and M final ones. Diagram (b) corresponds to the
photon radiation from an external line, and diagram (c) corresponds to the photon
radiation from internal lines.
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By exploiting this property, the LBK theorem at NLP can be easily derived
and reads

|A(p, k)|2LP+NLP = −
∑
i,j

(ηiQipi) (ηjQjpj)

(pi k)(pj k)
|H(p)|2

−
∑
i,j

ηiQiQj
piµ

(pi k)
Gµν

j

∂

∂pνj
|H(p)|2 , (3)

where Gµν
j = gµν − pµj k

ν

pj k
. To derive Eq. (3), the amplitude is expanded in k

while considering the other hard momenta p independent of k. Although
this step is incompatible with the conservation of four-momentum, which
can be stated as ∑

i

ηipi = k , (4)

it is mathematically valid. However, the consequence is that the non-
radiative amplitude in the right-hand side of Eq. (3) is evaluated using the
momenta p, which are unphysical for this process, since

∑
ηipi ̸= 0. This

might seem problematic because an amplitude is intrinsically defined for
physical momenta, and it is not uniquely defined for unphysical momenta.
Therefore, the value of H(p) is ambiguous, which translates into an am-
biguity on A(p, k) and thus appears to invalidate Eq. (3). The argument,
however, is not entirely correct, as shown in [8]. Indeed, although an am-
biguity is present, it only affects the NNLP terms. More precisely, if we
substitute |H|2 → |H|2 − ∆ in Eq. (3), the radiative amplitude changes
according to

|A|2 → |A|2 +
∑
i,j

(ηiQipi) (ηjQjpj)

(pi k)(pj k)

[
1 + ηj

(pj k)piµ
pi pj

Gµν
j

∂

∂pνj

]
∆(p) . (5)

However, taking into account that the function ∆(p) must vanish when∑
i pi = 0, one can see that the ambiguity on |A|2 is in fact of the order

O(1) since

δ|A|2 =
∑
i,j

(ηiQipi) (ηjQjpj)

(pi k)(pj k)

[
1 + ηj

(pj k)piµ
pi pj

Gµν
j

∂

∂pνj

]
∆(p)

= O(1) . (6)

The ambiguity is thus an NNLP effect. Therefore, the LBK theorem in
the form shown in Eq. (3) is consistent and can provide reliable results.
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Furthermore, due to the ambiguity in H, Eq. (3) results in an entire family
of equivalent formulations. Nevertheless, from the perspective of numerical
implementations, it would be desirable to have a formulation that fulfils
momentum conservation.

3. Shifted kinematics

There are multiple ways of restoring momentum conservation in Eq. (3)
(see e.g. the discussion in [2] or, more recently, in [9, 10]). The approach
we present here is based on the work described in [11, 12]. There, it was
proved that the LBK theorem can be reformulated by shifting the momenta
of the non-radiative amplitude. In this way, not only the conservation of
four-momentum is restored, but also the derivatives of the non-radiative
amplitude are removed, to get

|A(p, k)|2 = −

 n∑
ij=1

(ηiQipi) (ηjQjpj)

(pi k)(pj k)

 |H(p+ δp)|2 , (7)

where

δpµi = Qi

∑
k,l

ηkηlQkQl
pk pl

(pk k)(pl k)

−1∑
j

(
ηjQjpjν
k pj

)
Gνµ

i . (8)

This formulation simplifies the implementation of the theorem, making it
more suitable for numerical computations that use amplitudes generated by
public tools. However, it turns out that the shifted momenta p+δp in Eq. (7)
are not on-shell, which can be problematic in some applications. Indeed, one
finds

(p+ δp)2 = p2 +Q2
j

∑
k,l

ηkηlQkQl
pk pl

(pk k)(pl k)

−1

= p2 +O
(
k2
)
. (9)

To solve this issue, one can modify the shifts in such a way that they fulfil
momentum conservation and are on-shell to all orders in the soft-photon
expansion, while still keeping Eq. (7) valid [8]. These modified shifts are
defined as

δpµi = AQi

∑
j

ηjQj

k pj
pjνG

νµ
i +

1

2

A2Q2
i |SLP|

2

pi k
kµ , (10)

with
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A =
1

χ

(√
1− 2χ

|SLP|
2 − 1

)
, χ =

∑
i

ηiQ
2
i

pi k
,

|SLP|
2
= −

 n∑
ij=1

(ηiQipi) (ηjQjpj)

(pi k)(pj k)

 . (11)

With these new modified shifts, it is possible to efficiently calculate NLP
soft-photon emissions from arbitrary processes, and it is possible to use
amplitudes numerically generated by public tools.

4. Numerical predictions for µ−µ+γ production
at e−e+ and pp collisions

Next, we study the numerical results obtained using three different ver-
sions of the LBK theorem, i.e. Eq. (3), Eqs. (7)+(8), and Eqs. (7)+(10).
We do so by considering the e−e+ → µ−µ+γ process and comparing the re-
sults obtained with the LBK theorem to the exact results obtained without
the soft-photon approximation, as shown in Fig. 2. One can see that the two
formulations with shifts (called “NLP off-shell” and “NLP on-shell”, respec-
tively) seem to work better, at least for this process, but no clear difference
is visible between the two formulations.
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Fig. 2. Comparison of the soft-photon spectra between the different NLP formu-
lations of the LBK theorem, normalised to the exact result (i.e. no soft-photon
approximation).
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Since the on-shell shifts of Eq. (10) enable writing the amplitudes gen-
erated numerically, we use this formulation of the LBK theorem for the
remaining analyses shown in Figs. 3 and 4. Specifically, we compare the
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Fig. 3. Comparison of the pT distribution calculated at the different accuracies in
the soft expansion for e+e− collisions at

√
S = 91 GeV.
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Fig. 4. Comparison of the pT distribution calculated at the different accuracies in
the soft expansion for pp collisions at

√
S = 14 TeV.
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results for the e−e+ → µ−µ+γ and pp → µ−µ+γ processes, obtained us-
ing no approximation, with the corresponding expansions at LP and NLP.
To do so, we apply the following kinematic cuts on the external particles:
pT,γ > 1 MeV, pT,µ > 1 MeV in the transverse momenta, |η| < 2.5 in the
absolute pseudo-rapidity, and ∆R > 0.4 for the angular distance between
the particles. For both processes, we see that the NLP terms provide a very
good approximation, with only a few per cent deviation for energies up to
1 GeV, and that the improvement with respect to the LP approximation is
notable.
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