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The role of soft gluons in inclusive collinear parton densities as well
as in Transverse Momentum Dependent (TMD) parton densities is dis-
cussed. Applying the Parton Branching (PB) method, the so-called non-
perturbative Sudakov form factor could be identified with the integration
range of z → 1, which is neglected in collinear parton shower approaches.
The importance of soft gluons could be shown by investigating the trans-
verse momentum spectrum of Drell–Yan lepton pairs, leading to a width
of the intrinsic-kT distribution which is independent of

√
s, in contrast to

what is observed in parton shower approaches. The reason for this behav-
ior is traced back to the non-perturbative Sudakov form factor. The role
of soft gluons for observable hadron spectra is discussed and shown to be
negligible.
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1. Introduction

The transverse momentum of Drell–Yan (DY) lepton pairs pT(ℓℓ) has
been measured with great precision over a wide range in

√
s (from 30 GeV

to LHC energies e.g. [1–5]). At large pT(ℓℓ) the spectrum is described
by next-to-leading (NLO) perturbative calculations, at smaller pT(ℓℓ) soft
gluon radiation has to be resummed to all orders, and at very small pT(ℓℓ)
non-perturbative contributions play a role. The resummation is performed
in the form of CSS [6] or Transverse Momentum Dependent (TMD) factor-
ization [7] or in the form of parton showers in multipurpose Monte Carlo
event generators such as Herwig [8, 9], PYTHIA [10, 11] or Sherpa [12, 13].
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Especially the region of very small pT(ℓℓ) is of great interest, since this
region affects very much the determination of the W -mass via the transverse
momentum spectrum of the decay lepton. In CSS and TMD factorization,
the small-pT(ℓℓ) region is described by a contribution of non-perturbative
intrinsic transverse momentum of partons inside the hadron and a so-called
non-perturbative Sudakov form factor [14–16]. In Monte Carlo event gener-
ators, the parton shower treats parton emissions which are resolvable (e.g.
with a transverse momentum larger than a cutoff, q0, of the order of GeV)
in addition to intrinsic transverse momentum distributions. However, in or-
der to describe the low-pT(ℓℓ) region of the spectrum at different

√
s, the

width of the intrinsic transverse momentum distribution, parametrized as a
Gauss distribution, is required to be

√
s-dependent [17]. On the contrary,

the Parton Branching (PB) approach [18, 19] with its implementation into
the Monte Carlo event generator Cascade3 [20] allows for a description of the
pT(ℓℓ) spectrum at small pT(ℓℓ) with a width of the intrinsic-kT distribution
which is independent of

√
s [21]

The PB method provides an intuitive and direct bridge between CSS and
parton shower approaches in Monte Carlo event generators and therefore
offers the direct possibility to study their relation in detail and especially
to understand the origin of the so-called non-perturbative Sudakov form
factor [22].

2. Parton Branching method
and non-perturbative Sudakov form factor

The Parton Branching method [18, 19] was developed as a solution to the
DGLAP evolution equations and to provide information on the transverse
momentum distributions of the evolving partons by applying a reformulation
of the DGLAP evolution equation in terms of Sudakov form factors (see e.g.
Ref. [23]). A similar method has been developed in Cracow group around
Jadach [24–28].

The Sudakov form factor ∆a(µ
2, µ2

0) is essential in the formulation of the
PB method

∆a

(
µ2, µ2

0

)
= exp

−
∑
b

µ
2∫

µ
2
0

dq′ 2

q′ 2

zM∫
0

dz z PR
ba (αs, z)

 , (1)

with resolvable splitting functions PR
ba(αs, z) for splitting of parton a into

parton b as a function of the splitting variable z which is the ratio of the
longitudinal momenta of the involved partons. The splitting functions are
the DGLAP splitting functions at leading or next-to-leading order. For



The Non-perturbative Sudakov Form Factor and the Role . . . 5-A10.3

numerical stability, the parameter zM is introduced with zM = 1 − ϵ with
ϵ → 0. It is essential that ϵ → 0 to ensure proper cancellation of the different
terms in the derivation of the evolution equation as well as to reproduce the
DGLAP limit as shown in Refs. [18, 19] and to obtain stable solutions for
TMD distributions.

The PB evolution equation for a TMD density Aa(x,k, µ
2) for parton a

at scale µ can be written in integral form as

Aa

(
x,k, µ2

)
= ∆a

(
µ2

)
Aa

(
x,k, µ2

0

)
+
∑
b

µ
2∫

µ
2
0

d2q′

πq′ 2

∆a

(
µ2

)
∆a

(
q′ 2

)
×

zM∫
x

dz

z
PR
ab (αs, z) Ab

(x
z
,k + (1− z)q′, q′ 2

)
, (2)

with x being the longitudinal momentum fraction and k being the 2-dimen-
sional vector of the transverse momentum with kT = |k| and |q′| = q′.

The starting distribution Aa(x,k, µ
2
0) in Eq. (2) at scale µ0 is param-

etrized in terms of a collinear parton density at the starting scale and the
intrinsic-kT distribution described as a Gaussian distribution of width σ

A0,a

(
x,k, µ2

0

)
= f0,a

(
x, µ2

0

)
exp

(
−k2T/2σ

2
)/(

2πσ2
)
. (3)

The width of the Gaussian distribution σ is related to the parameter qs
defined by qs =

√
2σ.

For the evolution of the transverse momentum, angular ordering is es-
sential, which relates the evolution scale q′ to the transverse momentum qT
of the emitted parton via

q′ =
qT

(1− z)
. (4)

The PB evolution equation has been used to determine collinear and
TMD distributions by fits to deep-inelastic measurements at HERA [29].
One parametrization (PB-NLO-2018 Set1) reproduced the HERAPDF
collinear distribution with the evolution scale q′ as scale in αs. Angular
ordering suggests that qT should be used as a scale in αs, which has been
done for PB-NLO-2018 Set2. This choice required to define two different
regions: a perturbative region, with qT > q0, and a non-perturbative region
of qT < q0, where αs is frozen at q0.

The requirement of the perturbative region, qT > q0, leads directly to a
restriction of z as given by Eq. (4)

zdyn = 1− q0/q
′ . (5)
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The Sudakov form factor can now be separated into a perturbative (0 <
z < zdyn) and non-perturbative (zdyn < z < zM) part [22, 30]

∆a

(
µ2, µ2

0

)
= exp

−
∑
b

µ
2∫

µ
2
0

dq′ 2

q′ 2

zdyn∫
0

dz z PR
ba (αs, z)



× exp

−
∑
b

µ
2∫

µ
2
0

dq′ 2

q′ 2

zM∫
zdyn

dz z PR
ba (αs, z)


= ∆(P)

a

(
µ2, µ2

0, q
2
0

)
·∆(NP)

a

(
µ2, µ2

0, q
2
0

)
. (6)

In Fig. 1 integrated quark and gluon distributions at a scale of µ =
100 GeV are shown for different values of q0 which limits the z integration
with zdyn = 1−q0/q′. Stable results are obtained for q0<0.01 GeV, while dif-
ferences are visible in inclusive distributions for q0 > 0.01 GeV, showing the
importance of the non-perturbative region even for inclusive distributions.
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Fig. 1. Parton density of up-quark and gluon at µ = 100 GeV for different values
of q0 (used in zdyn = 1 − q0/q

′) obtained with the same initial parameters as for
PB-NLO-2018 Set2.

The PB method allows to make a connection to the CSS formalism: ap-
plying angular ordering with zdyn = 1 − q0/q

′ together with the transverse
momentum qT = q′(1− z) taken as a scale in αs allows to obtain the differ-
ent terms of the CSS Sudakov, even up to next-to-next-to-leading order as
discussed in Ref. [30]. In addition, the great advantage of the PB method



The Non-perturbative Sudakov Form Factor and the Role . . . 5-A10.5

is that the non-perturbative Sudakov form factor ∆(NP)
a can be calculated

and is fixed by the fit to inclusive distributions [29], in contrast to CSS,
where this form factor has to be constrained additionally from exclusive
measurements.

2.1. Soft gluons and the pT(ℓℓ) spectrum in Drell–Yan production

The transverse momentum pT(ℓℓ) spectrum of DY lepton pairs is the
benchmark measurement for TMD pdfs, soft-gluon resummation, and parton
shower approaches. While the spectrum at large pT(ℓℓ) is well described
by perturbative calculations at NLO, at smaller pT(ℓℓ) TMDs, soft gluon
resummation or initial-state parton showers are needed, at very small pT(ℓℓ)
non-perturbative effects play a role. In collinear parton shower approaches,
this very low pT(ℓℓ)-region is described by the inclusion of intrinsic motion of
partons inside the hadrons, usually described by a Gauss distribution. In the
shower description of PYTHIA or Herwig, a minimum transverse momentum
of the radiated parton is required, leading essentially to a suppression of
soft-gluon emissions in the non-perturbative region. In the PB approach,
the soft-gluon region is covered by the requirement that zM = 1 − ϵ with
ϵ → 0.

In Ref. [21], the transverse momentum spectrum pT(ℓℓ) is studied and
the width of intrinsic-kT distribution is determined from precision measure-
ments at the LHC energies [5] over a wide range of DY masses mDY. Mea-
surements at lower energies were also investigated, and it was found that
all measurements can be reasonably well described with the PB approach
applying PB-NLO-2018 Set2 with a width of the intrinsic-kT distribution
which is independent of the DY mass mDY as well as of

√
s as shown in

Fig. 2.
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Fig. 2. The width parameter qs of the intrinsic-kT distribution as a function of the
DY mass mDY and the center-of-mass energy

√
s. (Plots taken from Ref. [21].)



5-A10.6 H. Jung

The width of the intrinsic-kT distribution to be used in the collinear
parton shower Monte Carlo event generators PYTHIA and Herwig has been
determined in Ref. [31], and a strong dependence on the center-of-mass en-
ergy

√
s has been observed, in contrast to the findings in Ref. [21]. In

order to understand this behavior, a dedicated study has been performed in
Ref. [32]. The PB method has been used to mimic the behavior of collinear
parton shower Monte Carlo event generators by imposing a restriction on z
via zdyn = 1− q0/q

′: in Herwig, angular ordering is applied (similar to PB)
and the parameter Qg,q [9, p. 659] restricts the z-integration range and
in PYTHIA, zmax(Q

2) [11, p. 60] is used. These restrictions remove com-
pletely ∆(NP)

a from Eq. (6). Calculations have been performed using Mad-
Graph5_aMC@NLO [33] together with PB collinear parton distributions of
PB-NLO-2018 Set2. The PB-TMD distributions have been recalculated im-
posing two different cuts on z by zdyn = 1 − q0/q

′ with q0 = 1(2) GeV.
The collinear distributions were left unchanged in order to keep consistency
with the NLO hard process calculation, as argued in Ref. [22]. The width
of the intrinsic-kT distribution has been determined from different DY mea-
surements over a large range of center-of-mass energy

√
s. The obtained

widths of the intrinsic-kT distributions were found to be strongly dependent
on the center-of-mass energy, as shown in Fig. 3: a strong dependence of
the width parameter qs on the center-of-mass energy

√
s is observed as soon

as the z-integration range is restricted by zdyn = 1 − q0/q
′ with a stronger

dependence being observed for larger values of qs. For comparison, also the
results obtained in Ref. [21] are shown. The large uncertainty of the straight
line fit indicates that even a constant line is acceptable for qs → 0, while for
qs = 2 GeV, a steep slope is visible.
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Fig. 3. The width parameter qs of the intrinsic-kT distribution as a function of
center-of-mass energy

√
s. The uncertainty bands show the 95% C.L. (Plots taken

from Ref. [32].)
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The results of Refs. [21, 22, 32] prove that soft, non-perturbative gluons
play an important role for a consistent description of inclusive distributions,
such as integrated collinear parton densities as well as for the transverse
momentum distribution pT(ℓℓ) of DY lepton pairs.

2.2. Soft gluons and hadronic final states

Non-perturbative, soft gluons, with transverse momenta below a GeV
(and even below ΛQCD), are clearly not detectable and measurable as par-
tons or jets. Such soft contributions play an important role in inclusive
distributions, as shown in the previous sections. The effect of these soft
gluons has been studied in Ref. [22] within the PB-TMD parton shower
simulation in Cascade 3 [20]. As for inclusive distributions sensitive to the
TMD distributions, the PB-TMD parton shower can be used to simulate the
effects of soft gluons by applying different cuts on q0 in zdyn = 1− q0/q

′.
While clearly the accessible z-range is affected by different choices of q0

and obviously, the range of transverse momenta qT of emitted partons during
the initial-state cascades (shown in Fig. 4 (left)), the spectrum of observable
hadrons is not affected at all (Fig. 4 (right)). In the Lund string fragmenta-
tion, gluons act as kinks in the color string and, therefore, these soft gluons
play a negligible role. In cluster fragmentation, as used in Herwig, a finite
transverse momentum is required to form colorless clusters, and soft gluons
cannot be included easily.
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Fig. 4. Distributions of the transverse momentum distributions of emitted partons
in the initial-state cascade (left) and observable hadrons (right) for different values
of q0 in Z-boson events. (Plots taken from Ref. [22].)

3. Conclusion

The PB approach offers a very intuitive and direct link between analytic
resummation for inclusive parton distributions obtained with the DGLAP
equation on the one hand, and TMD resummation and parton shower ap-
proaches on the other hand. It was shown that on an inclusive level, the PB
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approach reproduces exactly semi-analytical solutions of the DGLAP evolu-
tion equation, as long as the z-integration is covering the range of soft gluons
with z → 1. This requirement is also essential to ensure proper cancellation
of different terms when cross sections are calculated at NLO.

The PB method provides directly also TMD distributions, since every
single branching is simulated and kinematic relations can be included. A
transverse momentum can be defined with a physical interpretation of the
evolution scale, in the PB method, angular ordering is applied. From the
PB-Sudakov form factor, the different terms of the CSS formalism can be
directly obtained (even at NNLO) if the z-integration range is restricted to
perturbative gluons via zdyn = 1− q0/q

′. A feature of the PB-Sudakov form
factor is that it covers also the region of z > zdyn and the so-called non-
perturbative Sudakov form factor, which is introduced by hand in CSS and
is obtained with its free parameters fixed from the fit to inclusive collinear
distributions.

Non-perturbative, soft gluons are essential for a description of the trans-
verse momentum pT(ℓℓ) spectrum of Drell–Yan lepton pairs at very low
pT(ℓℓ): only by including the non-perturbative Sudakov form factor, a width
of the intrinsic-kT distribution is obtained which is

√
s independent, in con-

trast to what is observed in collinear parton shower simulations. The PB
method has been used to explain this behavior as coming from the restriction
to perturbative gluon emission in parton shower approaches. With a sim-
ulation of PB-parton showers and the Lund string fragmentation, it could
be shown that the soft gluons only matter for inclusive distributions, while
there is no effect on observable hadron spectra.
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with S. Jadach on the Monte Carlo solution of evolution equations and
transverse momentum dependent distributions. His intuition and expertise
as well as his scientific achievements were always fascinating to me. I am
also grateful to my colleagues from the Cascade group, in particular, to Itana
Bubanja, Aleksandra Lelek, Mikel Mendizabal, Natasa Raicevic, and Sara
Taheri Monfared. I also thank the Epiphany 2024 organizing committee for
providing support to attend this conference.
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