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We recently derived a new action for gluodynamics by canonically trans-
forming the Yang–Mills action on light cone. The transformation elimi-
nated triple gluons vertices and replaced the gauge fields with Wilson lines.
This greatly reduced the number of diagrams required to compute tree-
level amplitudes. However, at the quantum level, the action turned out
to be incomplete. We present two ways, based on a one-loop effective ac-
tion approach, to systematically develop quantum correction to our action.
The first method retains Yang–Mills vertices in the loop, while the second
method explicitly incorporates the interaction vertices of our action into
the loop. We demonstrate that both approaches are equivalent, although
the former appears to be more efficient for computing higher-multiplicity
one-loop amplitudes.

DOI:10.5506/APhysPolBSupp.17.5-A13

1. Introduction

Scattering amplitudes are fundamental for predicting cross sections in
particle colliders. Yet, computing them in theories with self-interactions,
such as the Yang–Mills theory for gluons, is challenging. Traditionally, this
computation relied on Feynman diagrams, but even at the classical level
(tree amplitudes), the sheer number of diagrams can become overwhelming,
despite some cases like the maximally helicity violating (MHV) having a
relatively simple result [1]. Consequently, there is always a search for a new,
more efficient approach for computing pure gluonic amplitudes.
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Recent progress in this direction has predominantly concentrated on the
so-called on-shell approaches abandoning the more traditional space-time
field theoretic action-based approach. On the contrary, we recently derived
a new action — we dub it the “Z-field” action — by canonically transforming
the Yang–Mills action on the light cone [2]. The latter can be represented
schematically as follows:

SYM[A] = −A⋆L□LJA
•J −

(
V IJK
−++

)
A⋆IA•JA•K

−
(
V KIJ
−−+

)
A⋆KA⋆IA•J −

(
V LIJK
−−++

)
A⋆LA⋆IA•JA•K . (1)

Throughout this manuscript, we predominantly employ collective indices
I, J,K, . . . , which encompass color and position associated with the fields.
Repeated indices are summed over. However, if necessary, we can revert
to the more conventional notation with explicit color and position. For
instance, A⋆L ≡ Â⋆(x) = A⋆

at
a, where ta are the color generators satisfying[

ta, tb
]
= i

√
2fabctc. For position, we employ the ‘double-null’ coordinates

defined as v+ = v · η, v− = v · η̃, v• = v · ε+⊥, and v⋆ = v · ε−⊥ with
η = (1, 0, 0,−1) /

√
2, η̃ = (1, 0, 0, 1) /

√
2, and ε±⊥ = 1√

2
(0, 1,±i, 0). In these

coordinates, □ = 2(∂+∂− − ∂•∂⋆).
The light-cone Yang–Mills action Eq. (1) relies solely on the two trans-

verse field components A• = (A1+iA2)/
√
2 and A⋆ = (A1−iA2)/

√
2 which,

in the on-shell limit, can be identified with the ‘plus’ and ‘minus’ helicities.
In our convention, • = plus and ⋆ = minus.

It is well-known that the triple gluon vertices — V−−+ and V−++ in
Eq. (1) — vanish for real momenta in the on-shell limit. Moreover, they
are rather small “building blocks” due to which the number of Feynman dia-
grams grows factorially when computing higher multiplicity amplitude. We
therefore decided to derive a new action by performing a canonical transfor-
mation that eliminates these vertices from the Yang–Mills action Eq. (1) [3].
The solution of the transformation has the following form:

A⋆L[Z] =
∞∑
n=1

n∑
i=1

Λ
L{J1...Ji}{Ji+1...Jn}
i,n−i

i∏
k=1

Z⋆Jk

n∏
l=i+1

Z•Jl , (2)

and

A•L[Z] =
∞∑
n=1

n∑
i=1

Ξ
L{J1...Ji}{Ji+1...Jn}
i,n−i

i∏
k=1

Z•Jk
n∏

l=i+1

Z⋆Jl . (3)
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Substituting Eqs. (2)–(3) into the Yang–Mills action Eq. (1), we get the new
action which has the following form:

S[Z] = −Z⋆L□LJZ
•J −

∞∑
n=4

n−2∑
m=2

U{J1...Jm}{Jm+1...Jn}
− · · · −︸ ︷︷ ︸

m

+ · · · +︸ ︷︷ ︸
n−m

m∏
i=1

Z⋆Ji

n∏
k=m+1

Z•Jk .

(4)
For our current discussion, the exact expressions for the kernels Λi,j and Ξi,j

as well as the interaction vertices U{J1...Jm}{Jm+1...Jn}
− ··· −+ ···+ are not required. These

can, however, be found in [3, 4]. Notice, starting from 4-point MHV, there
are higher point interaction vertices in the Z-field action. This greatly re-
duces the number of diagrams required to compute tree level amplitudes. For
instance, 9-point amplitudes require a maximum of 25 diagrams [5]. Further-
more, the number of diagrams required to compute split-helicity tree-level
amplitudes using the Z-field action follows Delannoy numbers [4]. Another
interesting aspect is that the inverse of the solutions Eqs. (2)–(3) have a
3-dimensional structure of intersecting lines. For details and an elaborate
discussion for tree-level computation, see1 [3, 4, 7, 8].

In the present text, our focus is rather on discussing quantum corrections
to the Z-field action Eq. (4). Notice, amplitudes of the type (+ · · ·+±) and
(− · · · − ±) are all zero in the Z-field action. While these amplitudes are
zero at tree level, they become non-zero at one-loop level, suggesting the
absence of certain loop contributions in Z-field action Eq. (4). Below, we
delve into methods to address this issue by systematically developing loop
corrections to the Z-field action.

2. Quantum corrections

Below, we present two equivalent methods for systematically incorpo-
rating quantum corrections to the Z-field action Eq. (4). Both rely on the
one-loop effective action method. We explore the strengths and weaknesses
of each approach and demonstrate their equivalence.

2.1. Approach 1: Yang–Mills vertices in the loop

In this approach, we start with the generating functional for the full
Greens function for the Yang–Mills theory (for the sake of simplicity, we
make color and position explicit)

Z[J ] =

∫
[dA] ei(SYM[A]+

∫
d4x Tr Ĵj(x)Â

j(x)) , (5)

1 A concise presentation can also be found in Ref. [6].
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where SYM is the light-cone Yang–Mills action Eq. (1). Ĵ = Jat
a is the aux-

iliary current coupled with the Yang–Mills fields and the index j = •, ⋆ runs
over the transverse field components. To derive the one-loop effective ac-
tion, we expand the terms in the exponent around the classical configuration
Âi

c =
{
Â•

c(x), Â
⋆
c(x)

}
up to second order in fields. Higher-order terms are

necessary for corrections beyond one loop. The linear term vanishes owing
to the classical EOMs. Performing the Gaussian integral, we get [4, 9]

Z[J ] ≈ eiSYM[Ac[J ]]+i
∫
d4xTr Ĵi(x)Â

i
c[J ](x)− 1

2
Tr ln[MYM[J ]] , (6)

where Âi
c(x) is understood as a functional of the currents Âi

c[J ](x) obtained
from solving the classical EOMs and the matrix in the log term reads

MYM
IN [J ] =

 δ2SYM[Ac]
δA•IδA⋆N

δ2SYM[Ac]
δA•IδA•N

δ2SYM[Ac]
δA⋆IδA⋆N

δ2SYM[Ac]
δA⋆IδA•N

 . (7)

The one-loop effective action ΓYM[Ac] is defined as the Legendre transform
of the generating functional for the connected Greens function

ΓYM[Ac] = WYM[J ]−
∫
d4x Tr Ĵi(x)Â

i
c(x) , (8)

where WYM[J ] = −i ln [ZYM[J ]]. Substituting Eq. (6), we get

ΓYM[Ac] = SYM[Ac] +
i

2
Tr ln

[
δ2SYM[Ac]

δA⋆IδA•K
δ2SYM[Ac]

δA⋆KδA•J

−δ2SYM[Ac]

δA⋆IδA•K
δ2SYM[Ac]

δA⋆KδA⋆L

(
δ2SYM[Ac]

δA•LδA⋆M

)−1
δ2SYM[Ac]

δA•MδA•J

]
, (9)

where we used the identity of Eq. (22) in the log term. The above expres-
sion depends only on fields and represents the Yang–Mills one-loop effective
action where the log term accounts for the loop contribution. To see this,
notice that each of the two terms in the log consists of the second-order
derivative of the Yang–Mills action with respect to A⋆ and A•. At the
lowest order in fields, this term gives an inverse propagator which can be
factored out of the log as follows:

Tr ln
[
MYM

]
= Tr ln[−□]

+Tr ln

[{(
1+
(
□−1V IKP

−++

)
A•P

c +
(
□−1V PIK

−−+

)
A⋆P

c +
(
□−1V PIKQ

−−++

)
A⋆P

c A•Q
c

)
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×
(

1 +
(
□−1V KJR

−++

)
A•R

c +
(
□−1V RKJ

−−+

)
A⋆R

c +
(
□−1V RKJS

−−++

)
A⋆R

c A•S
c

)}

−
{(

1 +
(
□−1V IKP

−++

)
A•P

c +
(
□−1V PIK

−−+

)
A⋆P

c +
(
□−1V PIKQ

−−++

)
A⋆P

c A•Q
c

)
×
((

□−1V KLR
−−+

)
A•R

c +
(
□−1V KLRS

−−++

)
A•R

c A•S
c

)
×
(

1 +
(
□−1V MLT

−++

)
A•T

c +
(
□−1V TML

−−+

)
A⋆T

c +
(
□−1V TMLU

−−++

)
A⋆T

c A•U
c

)−1

×
((

□−1V VMJ
−++

)
A⋆V

c +
(
□−1V WVMJ

−−++

)
A⋆W

c A⋆V
c

)}]
. (10)

The first log is field-independent and can be discarded. However, factoring it
out equips the other terms with a propagator necessary to connect vertices as
is well-known from the Feynman rules. The second log can be expanded into
a series. Doing this and finally tracing over the differentiated legs generates
the loops. Following this procedure, up to second-order in fields, the log
term reads

Tr ln
[
MYM[A]

] ∣∣∣∣∣
2nd

= 2
(
□−1V IIP

−++

)
A•P

c + 2
(
□−1V PII

−−+

)
A⋆P

c

+2
(
□−1V PIIQ

−−++

)
A⋆P

c A•Q
c −

(
□−1V IKP

−++□−1V KIR
−++

)
A•P

c A•R
c

−
(
□−1V PIK

−−+□−1V RKI
−−+

)
A⋆P

c A⋆R
c −

[
2
(
□−1V IKP

−++□−1V RKI
−−+

)
+
(
□−1V IMP

−−+ □−1V RMI
−++

) ]
A•P

c A⋆R
c , (11)

where the first three terms are tadpoles and the remaining three are bubbles.
To develop one-loop corrections to the Z-field action, we performed the

transformation [3] that derives the Z-field action from the Yang–Mills action
to the Yang–Mills one-loop effective action Eq. (9). By doing this, we get

Γ [Zc] = S[Zc] +
i

2
Tr ln

[
δ2SYM[A]

δA⋆IδA•K
δ2SYM[A]

δA⋆KδA•J

− δ2SYM[A]

δA⋆IδA•K
δ2SYM[A]

δA⋆KδA⋆L

(
δ2SYM[A]

δA•LδA⋆M

)−1
δ2SYM[A]

δA•MδA•J

]
Ac=Ac[Zc]

. (12)

The transformation maps SYM[Ac] → S[Zc] and for the log term, it substi-
tutes the Yang–Mills fields outside the loop (all the Âi

c(x) fields in Eq. (10))
with the solution Âi

c[Zc](x) of the transformation Eqs. (2)–(3). As a result
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MYM[A] in Eq. (9) becomes MYM[A[Z]] ≡ MYM[Z]. Following the same
procedure discussed above for expanding the log term in Eq. (9), up to the
second order in Z-fields, the log term in Eq. (12) reads

Tr ln
[
MYM[Z]

] ∣∣∣∣∣
2nd

= 2
(
□−1V IIP

−++

)
Z•P
c + 2

(
□−1V PII

−−+

)
Z⋆P
c

+
[
2
(
□−1V IIP

−++

)
Ξ

P{J1J2}
2,0 −

(
□−1V IKJ1

−++ □−1V KIJ2
−++

) ]
Z•J1
c Z•J2

c

+
[
2
(
□−1V PII

−−+

)
Λ
P{J1J2}
2,0 −

(
□−1V J1IK

−−+ □−1V J2KI
−−+

) ]
Z⋆J1
c Z⋆J2

c

+
[
2
(
□−1V IIP

−++

)
Ξ

P{J2}{J1}
1,1 + 2

(
□−1V PII

−−+

)
Λ
P{J1}{J2}
1,1 + 2

(
□−1V J1IIJ2

−−++

)
−2
(
□−1V IKJ2

−++ □−1V J1KI
−−+

)
−
(
□−1V IMJ2

−−+ □−1V J1MI
−++

) ]
Z⋆J1
c Z•J2

c . (13)

Note that the above expression represents all the one-loop contributions
necessary to compute amputated one-loop Green’s function up to two points.
Whereas if one wants to compute the same object using the Yang–Mills one-
loop effective action Eq. (9), the terms shown in Eq. (11) are incomplete
because one can take the tadpoles from the latter and connect it with the
triple gluons vertices from SYM[Ac] to obtain additional contributions. In the
case of Z-fields one-loop effective action Eq. (12), the substitution Âi

c(x) →
Âi

c[Zc](x) in the log term accounts for these. This idea generalises as follows.
The substitution Âi

c(x) → Âi
c[Zc](x) outside the loops in Eq. (12) accounts

for all the tree-level connections involving the triple gluons vertices which
in the case of Yang–Mills, one has to do separately. This combined with
the fact that the interaction vertices in our action are much “bigger” than
the Yang–Mills vertices implies that computing higher multiplicity one-loop
amplitudes using Eq. (12) should be much more efficient.

Although by construction the action Eq. (12) should be one-loop com-
plete with no missing contributions, we validated it by computing 4-point
one amplitudes with all helicity combinations: (+ + +±), (+ + −−), and
(−−−±) in [4]. We also used this approach to successfully develop quantum
corrections to the MHV action [10] (understood as the action implementing
the CSW rules [11]) which suffers from similar issues [9].

The only drawback of this approach is that the substitution Âi
c(x) →

Âi
c[Zc](x) in the log term of Eq. (12) does not affect the loop structure (see

Fig. 1). That is, the Yang–Mills vertices remain intact in the loop whereas
the Z-field interaction vertices are only available for tree-level connections
outside the loops. We would therefore like to re-derive the Z-field one-loop
effective action such that the Z-field vertices are explicit in the loop.
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+

− +

−
+−

A•
cA•

c

A⋆
c

Âi
c(x)=⇒Âi

c[Zc](x)−−−−−−−−−−−−→ +

− +

−
+−

Ξ̃i Ẑ⋆

Ẑ•

Ẑ•

...

Ẑ⋆

Ẑ•

Ẑ•

Ẑ•

Ẑ•

Ẑ⋆
...

...

Ξ̃j

Λ̃k

...
...

...

Ẑ⋆

Ẑ⋆

Ẑ⋆

Fig. 1. On the left, we have a (++−) one-loop triangular contribution originating
from the log term in the Yang–Mills one-loop effective action Eq. (9). After per-
forming the canonical transformation, the field outside the triangle undergoes the
substitution Âi

c(x) → Âi
c[Zc](x). This, however, does not alter the loop itself.

2.2. Approach 2: Z-field vertices in the loop

In this approach, the starting point is still the generating functional for
full Green’s function for the Yang–Mills theory Eq. (5). The change is that
we perform the canonical transformation that derives the Z-field action from
the Yang–Mills action right away to get

Z[J ] =

∫
[dZ] ei(S[Z]+

∫
d4x Tr Ĵj(x)Â

j [Z](x)) . (14)

The important point is to also transform the source term in Eq. (5) which
now becomes non-linear in fields. As a result when we repeat the derivation
of one-loop approximation by expanding around the classical configuration
up to the second order in fields followed by the Gaussian integration, we get

Z[J ] ≈ eiS[Zc[J ]]+i
∫
d4x Tr Ĵi(x)Â

i[Zc[J ]](x)− 1
2
Tr lnM [J ] . (15)

In this case, the matrix in the log is a bit more complicated

M [J ] = MZ-field[J ] +M src[J ] , (16)

where

MZ-field
IK [J ] =

 δ2S[Zc]
δZ•IδZ⋆K

δ2S[Zc]
δZ•IδZ•K

δ2S[Zc]
δZ⋆IδZ⋆K

δ2S[Zc]
δZ⋆IδZ•K

 , (17)

and

M src
IK [J ] =

J⋆L
δ2A⋆L[Zc]
δZ•IδZ⋆K + J•L

δ2A•L[Zc]
δZ•IδZ⋆K J⋆L

δ2A⋆L[Zc]
δZ•IδZ•K + J•L

δ2A•L[Zc]
δZ•IδZ•K

J⋆L
δ2A⋆L[Zc]
δZ⋆IδZ⋆K + J•L

δ2A•L[Zc]
δZ⋆IδZ⋆K J⋆L

δ2A⋆L[Zc]
δZ⋆IδZ•K + J•L

δ2A•L[Zc]
δZ⋆IδZ•K

 .

(18)



5-A13.8 B. Grygielski, H. Kakkad, P. Kotko

The matrix MZ-field[J ] in Eq. (17) accounts for all the one-loop contributions
involving only the Z-field interaction vertices. Since we know that Z-field
vertices do not give the full one-loop amplitudes, it is naturally expected that
there must be additional contributions. These, as we demonstrate below, are
accounted for by the “source-matrix” M src[J ] Eq. (18). Notice, instead of
transforming the source term in Eq. (5), had we coupled a “new” source
term of the type

∫
d4xĴ ′

i(x)Ẑi(x) with the Z-filed action, then repeating the
above derivation, we would only get the matrix MZ-field[J ] in Eq. (17).

Using Eq. (15), we can derive the one-loop effective action as follows:

Γ [Zc] = W [J ]−
∫
d4x Tr Ĵi(x)Â

i
c[Zc](x) , (19)

where W [J ] = −i ln [Z[J ]]. However, in the current approach, there is one
more step. Recall, Γ [Zc] is a functional only of fields whereas the above
procedure keeps the sources in the matrix of Eq. (18) unaltered. We, there-
fore, need a way to replace the sources in the latter in terms of fields. This
is achieved via the classical EOMs. In [4], we showed that the complicated
classical EOMs obtained from Eq. (14) can be re-expressed in terms of the
Yang–Mills classical EOMs as follows:

δSYM[A[Zc]]

δA⋆L
= −J⋆L[Zc] ,

δSYM[A[Zc]]

δA•L = −J•L[Zc] . (20)

Substituting the above into Eq. (18), we get

Γ [Zc] = S [Zc] + i
1

2
Tr lnM [J [Zc]] . (21)

The trace of log can be expressed as follows:

Tr lnM = Tr lnM•⋆ +Tr ln
(
M⋆• −M⋆⋆M

−1
•⋆ M••

)
, (22)

where M•⋆ = M⋆• are the diagonal blocks of the matrix of Eq. (16), M⋆⋆

is the bottom-left and M•• is the top-right block. We can then factor out
the inverse propagator followed by expanding the log as a series. Finally,
tracing over the differentiated legs, we get the loops. These loop diagrams
are of three types: those involving only Z-field vertices in the loop, those
originating from the source-matrix in Eq. (18) alone and thus have only the
kernels Λi,j and Ξi,j of the solutions of Eqs. (2)–(3) in the loop, and finally
those that mix the previous two. We present these types in Fig. 2.
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U
U

U

−

−
+

+
− −

−
+

+

−

+

+
−

+

Λ|Ξ

Λ|Ξ

Λ|Ξ

−

−
+

+
− −

−
+

+

−

+

+
−

+

I
I

I

−

−
+

+
− −

−
+

+

−

+

+
−

+

I ∈ {U ,Λ,Ξ}

Fig. 2. The loop diagrams originating from the log term in Eq. (21) can be cate-
gorized into three sets: first includes those involving only Z-field vertices U in the
loop, second includes those originating from the source-matrix Eq. (18) alone and
thus have only the kernels Λi,j and Ξi,j of the solutions of Eqs. (2)–(3) in the loop,
and finally the third type includes those that mix the previous two.

Expanding the log term in Eq. (21) up to second order in fields, we get

Tr lnM

∣∣∣∣∣
2nd

= −2
Λ
L{I}{P}
1,1

□IP
□LJZ

•J
c − 2□LJ

Ξ
L{P}{I}
1,1

□IP
Z⋆J
c

−
(
4
Λ
L{I}{PJ1}
1,2

□IP
□LJ2 + 2

Λ
L{I}{P}
1,1

□IP
□LJΞ

J{J1J2}
2,0 + 2

Λ
L{I}{P}
1,1

□IP

(
V LJ1J2
−++

)
+
Λ
L1{K1}{P}
1,1

□IP
□L1J1

Λ
L2{I}{P1}
1,1

□K1P1

□L2J2

)
Z•J1
c Z•J2

c

−
(
2
Ξ

L{P}{I}
1,1

□IP
□LJΛ

J{J1J2}
2,0 + 2

Ξ
L{P}{I}
1,1

□IP

(
V J1J2L
−−+

)
+ 4

Ξ
L{P}{IJ1}
1,2

□IP
□LJ2

+□L1J1

Ξ
L1{P}{K1}
1,1

□IP
□L2J2

Ξ
L2{P1}{I}
1,1

□K1P1

)
Z⋆J1
c Z⋆J2

c

+

(
8
U{IJ1}{PJ2}
−−++

□IP
− 4

Ξ
L1{PK1}
2,0

□IP
□L1J1

Λ
L2{P1I}
2,0

□K1P1

□L2J2 − 4
Λ
L{IJ1}{P}
2,1

□IP
□LJ2

−2
Λ
L{I}{P}
1,1

□IP
□LJΞ

J{J2}{J1}
1,1 − 2

Λ
L{I}{P}
1,1

□IP
2
(
V LJ1J2
−−+

)
− 4

Ξ
L{PJ2}{I}
2,1

□IP
□LJ1

−2
Ξ

L{P}{I}
1,1

□IP
□LJΛ

J{J1}{J2}
1,1 −

Λ
L1{K1}{P}
1,1

□IP
□L1J2□L2J1

Ξ
L2{P1}{I}
1,1

□K1P1

−2
Ξ

L{P}{I}
1,1

□IP
2
(
V J1LJ2
−++

)
−□L1J1

Ξ
L1{P}{K1}
1,1

□IP

Λ
L2{I}{P1}
1,1

□K1P1

□L2J2

)
Z⋆J1
c Z•J2

c .

(23)
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The above expression demonstrates the major drawback of this approach.
Notice, on comparing it with Eq. (13) which represents all the one-loop
contributions up to 2 points in the previous approach, we see that except
for the first two types of tadpoles, the number of contributing terms for all
the other cases got doubled. However, in [4], we demonstrated that both
the one-loop actions, action Eqs. (12) and (21), are equivalent.

Precisely, we showed that one can start with the complicated log term
in Eq. (21) and just use the properties of the canonical transformation to
reduce it to the log term in Eq. (12) modulo a field-independent volume-
divergent factor which does not contribute to amplitude computation. Since
the classical action S[Z] is the same in both the one-loop actions of Eqs. (12)
and (21), and the log terms can be interchanged, the two one-loop actions are
equivalent. This equivalence not only validates the quantum completeness of
Eq. (21) but also verifies our previous claim that the missing contributions
indeed come from the source matrix of Eq. (18). However, it states that in
rewriting the log term of Eq. (12) to make Z-field vertices explicit in the
loop, we are expanding a compact expression into a plethora of terms.

From the discussion above, it appears that explicitly introducing Z-field
interaction vertices into the loop does not improve efficiency. Rather, it prob-
ably complicates amplitude computation and introduces spurious contribu-
tions, which are primarily tadpole contributions. To validate this statement,
we employed both actions from Eqs. (12) and (21) to derive contributing
terms for the 5-point MHV one-loop amplitude, while neglecting unphysical
contributions: tadpoles, (++) or (−−) bubbles due to anticipated cancel-
lation by counterterms, and (+−) bubbles on external legs as these would
yield a tree-level contribution upon amputation. Even then, the number of
contributions from Eq. (21) exceeds those from Eq. (12), indicating that the
latter is indeed more efficient for computing higher multiplicity amplitudes.
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