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I discuss the thermodynamics-based derivation of the formula for the
entanglement entropy of a system of gluons. The derivation is based on an
approach where saturation and the Unruh effect were used to obtain and
discuss the entropy of gluons. The formula agrees, in the high-energy limit,
up to a numerical factor, with more recent results, where arguments based
on the density matrix and bipartition of the proton were used to obtain
the formula. I also discuss the relation of entropy as obtained in BFKL in
DLL approximation and with the application of the BK equation.
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1. Introduction

In arXiv:1103.3654v1 [hep-ph] and arXiv:1103.3654v2 [hep-ph]
versions of paper [1], it has been shown that if one assumes that the sat-
uration scale acts as an effective mass of a system of gluons that populate
proton boosted to high rapidity and furthermore as effective temperature,
then one can obtain thermodynamic entropy which depends linearly on the
rapidity

S = πλ y , (1)

where S is the entropy of gluons, y is the rapidity, and λ will be introduced
later.

The discussion leading to this formula relied on the argumentation that
decelerating hadron in the color field of another hadron effectively experi-
ences temperature in its rest frame in accord with the Unruh effect [3]. The
deceleration is of the order of the saturation scale Qs where the saturation
scale signals the emergence of a dense system of gluons. Furthermore, the
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motivation comes also from studies of the thermalization problem of nu-
clear matter where it is argued that Color Glass Condensate [4] provides
appropriate initial conditions for subsequent thermalization.

More recently, however, there has been substantial progress in under-
standing, from more fundamental principles grounded in quantum mechan-
ics and quantum field theory, the origin of entropy production in high-
energy collisions [5–23]. We will focus on the result obtained in the pa-
pers [2, 9, 24, 25] where the entropy has been shown to depend linearly on
rapidity. This behavior of entanglement entropy has been shown to be in
accord with measured hadronic entropy [26–31]. In particular, in paper [2],
the authors considered the Deep Inelastic Scattering process where the vir-
tual electron probes only part of the proton’s wave function and therefore
introduces bi-partition of the target. This necessarily leads to the rising of
entanglement of observed and unobserved degrees of freedom and therefore
to entanglement entropy. Using the equation that describes the rapidity
evolution of probability for n parton state pn(y) after solving and evaluating
von Neuman entropy, they obtain

S(y) = ln
(
eλy − 1

)
+ eλy ln

(
1

1− e−λy

)
, (2)

and taking the asymptotics of y → ∞, they obtain the expression1

S = λ y . (3)

In the 1 + 1 dimensional model, the λ is interpreted as the BFKL intercept
and reads λ = 4Ncαs

π ln 2, while in the 3 + 1 dimensional case, it reads
λ = Ncαs

π ln(r2Q2
s ), where r is the size of the dipole. The similar structure

was also obtained within the 3 + 1 dimensional dipole model in the double
logarithmic approximation [24, 25].

The formula of Eq. (1) is up to a constant, the same as in Eq. (3)
which results from an asymptotic expansion of the complete expression (the
asymptotic expansion here means that one is reaching a maximally entangled
state [29]). This is also consistent with the thermodynamic vs. statistical-
based approach where quantities tend to match after a long time passes, the
role of time is played here by the rapidity. The λ is the speed of growth of
low-x or moderate-x gluons.

2. Entropy formula

One can reconcile Eq. (1) with Eq. (3) by rescaling λ in the equation
that connects the saturation scale with temperature, Eq. (1), through the

1 The authors of [2] used symbol ∆, while I use λ.
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introduction of a constant factor c = π, as expressed by

T =
cQs

2π
. (4)

While this is arbitrary, one should keep in mind that Eq. (4) with c = 1 is
based on qualitative arguments that the deceleration is equal to the satura-
tion scale. Due to that, formula (1) is approximate. The more fundamental
derivation of (1) is presented in [2, 24, 25]. Now, we use the thermodynamic
relation between energy and entropy

dE = TdS (5)

and by setting dE = dM , we obtain

dM = TdS . (6)

Using the argument that the saturation scale acts as an effective mass of a
system of gluons, we have

dM = dQs(x) . (7)

In the next step, we use Eq. (4) which allows us to link the saturation scale
to entropy

dQs(x)

Qs(x)
= c

dS

2π
(8)

which leads to

S =
π

c
ln

(
Q2

s (x)

Q2
0

)
, (9)

and we set the lowest entropy state to zero. Now using that saturation scale
which is approximately Q2

s = Q2
0(x0/x)

λ [32] and defining the rapidity as
y = ln(x0/x) (x0 and Q0 are constants), we obtain

S = λ y , (10)

where the integration constants have been chosen to match the formulas.
The basic observation that allowed the derivation of this formula within the
thermodynamic approach is that the saturated system of gluons is charac-
terized by only one scale — the saturation scale Qs. This feature can be used
to express the entropy formula in terms of a number of gluons in analogy
to [2] (see also discussion along these lines in [1]). We will use the GBW
gluon density that reads

F
(
x, k2

)
=

NcS⊥
αs8π2

k2

Q2
s

e
− k2

Q2
s . (11)
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After integrating over k2, we obtain

xg(x) =

∞∫
0

dk2F
(
x, k2

)
=

NcS⊥
αs8π2

Q2
s . (12)

Using (9) and (12), we may write

S = lnxg(x) + const. , (13)

where the constant can be absorbed in the xg(x). The expression above was
obtained assuming a specific form of unintegrated gluon density. However,
the crucial point is that we work in saturation-dominated regions of phase
space. One could use any other low-x dipole gluon density with saturation
as they behave as F ∼ k2 and integrate it up to the saturation scale to
arrive at a result that would differ by a constant. Another derivation of
Eq. (13) was obtained in the double leading logarithmic approach (DLL).
The derivation allowed to account for the hard scale dependence [24].

Some similarities of behaviour of entropy obtained within DLL and satu-
ration-based approximations can be understood better with the help of mo-
mentum space versions of the Balitsky–Fadin–Kuraev–Lipatov [33] and
Balitsky–Kovchegov [34, 35] evolution equations. As it is well known, the
BFKL equation for unintegrated gluon density F(x, k2)

F(x, k) = F (0)(x, k)

+ᾱs

1∫
x

dz

z

∫
dk′2

[
F
(
x
z , k

′)
|k2 − k′2|

− k2

k′2
F
(
x
z , k

)
|k2 − k′2|

+
k2

k′2
F
(
x
z , k

)
√
k4 + 4k′4

]
(14)

is infrared sensitive due to the presence of the anticollinear pole i.e. config-
urations where k′2 ≫ k2 and unordered emissions in the transverse momen-
tum. The equation can be solved in the diffusive approximation which is
far from both collinear and anticollinear regions but the resulting solution
is not in accord with the KNO scaling found in [24].

The BK equation which accounts for the recombination of gluons and
therefore models saturation has this feature that the triple pomeron vertex
is dominated by the anticollinear pole which as evolution progresses is sub-
tracted from the BFKL kernel therefore overall its contribution diminishes.
This can be seen from the structure of integrals in the BK equation as shown
below [36, 37] (see also [38])
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F
(
x, k2

)
= F (0)

(
x, k2

)
+ᾱs

1∫
x

dz

z

∫
dk′ 2

[
F
(
x
z , k

′ 2)
|k2 − k′ 2|

− k2

k′ 2
F
(
x
z , k

2
)

|k2 − k′ 2|
+

k2

k′ 2
F
(
x
z , k

2
)

√
k4 + 4k′ 4

]

−2ᾱ2
sπ

3

N2
cR

2

1∫
x

dz

z


 ∞∫
k2

dk′ 2

k′ 2
F
(x
z
, k′ 2

)2

+F
(x
z
, k2

) ∞∫
k2

dk′ 2

k′ 2
ln

(
k′ 2

k2

)
F
(x
z
, k′ 2

) . (15)

As one can see the integral over k′ 2 in the nonlinear part has the lower
limit set by k2. Furthermore, the diffusion behavior of the linear part of the
equation is tamed by the nonlinearity [39]. To some extent, such features
can be mimicked by the double-leading logarithmic approximation of the
BFKL equation where the anticollinear pole is neglected. Furthermore, this
approximation gives gluon density far from the diffusive region

F
(
x, k2

)
= F (0)

(
x, k2

)
+ ᾱs

1∫
x

dz

z

k2∫
k2min

dk′2
F
(
x
z , k

′ 2)
k2

. (16)

We expect that the above-mentioned similarities of BK and BFKL in the
DLL approximation might lead to a similar mechanism for the generation of
entropy (at least in some regions) as both of the equations have limited phase
space as compared to the BFKL evolution. However, the amount of entropy
will be different as the nonlinearity in the BK equation starts to play a role
and to constrain phase space when x is very small and kT is small while the
phase DLL equation is constrained from the beginning. Eventually, BK will
lead to vanishing entropy while the entropy in DLL will grow.

3. Conclusions

In the paper, we revisited the thermodynamics-based derivation of the
entanglement entropy formula. The formula agrees in functional form with
the asymptotic limit of the expression obtained by using the dipole cascade
model [2]. By appropriately matching numerical factors, the formulas can
be made to take the same form. The findings of this paper demonstrate
that in QCD, one can, in principle, calculate the same quantity using both
a thermodynamic and a fine-grained quantum theory-based approach. This
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stands in contrast to the current state of black hole physics, where calcu-
lating the entropy of black holes in a 3 + 1 D case within a realistic theory
remains a significant challenge. From this perspective, QCD may play a
role in testing ideas for a better understanding of quantum gravity problems
(through various mappings between QCD and gravity [40]), as it has regimes
in which it is nearly classical and by construction unitary. Questions along
these lines and concrete ideas were formulated in [41].

K.K. acknowledges the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 824093.
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