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The most complete high-energy evolution of Wilson line operators is
described by the set of equations called Balitsky–JIMWLK evolution equa-
tions. It is known from the studies of the linear — the BFKL — evolution
equation that the leading corrections come from the kinematically-enhanced
double colinear logarithms. A method for resuming such logarithmic correc-
tions to all orders for the Balitsky–Kovchegov equation is known under the
name of kinematical constraint. In this work, we discuss the progress in im-
plementing these corrections into the Langevin formulation of the JIMWLK
equation. In particular, we introduce a set of correlation functions which
are nonlocal in the rapidity variable. They appear in the construction of
the kinematical constraint, however, their behavior with rapidity has not
been investigated numerically so far. We derive their large-N evolution
equations, solve them numerically, and comment on their implications for
the implementation of the full kinematical constraint.
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1. Introduction

In Deep Inelastic Scattering experiments on protons, such as the ones
conducted at the HERA accelerator or planned at the EIC collider in
Brookhaven National Laboratory, the QCD dynamics in the high-energy
limit is believed to be captured by an effective description called Color Glass
Condensate [1–6]. It is founded on the observation that in the saturation
regime, the dense and slow gluons of the target can be described by clas-
sical fields and are separated in energy from the fast and energetic gluons
from the projectile. This framework allows to calculate various measurable
observables, for instance, the di-jet cross section in the nearly back-to-back
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limit [7]. The crucial element of such calculation is the evolution equation
which relates measurements at different values of the Bjorken-x variable.
The most general evolution equation is the so-called Balitsky–JIMWLK set
of equations [8–14]. In the limit of a large number of color, Nc, a simplified,
closed equation for the dipole gluon amplitude can be derived, called the
Balitsky–Kovchegov equation [8, 15]. For some observables, like the men-
tioned di-jet cross section in the nearly back-to-back limit, the knowledge of
the dipole amplitude is not enough and one should also use more complicated
correlation functions like the Weizäcker–Williams distribution. The latter
can only be obtained by solving the full B–JIMWLK equation. The purpose
of this contribution is to describe our efforts to include subleading correc-
tions to the numerical framework for solving the leading order B–JIMWLK
equation.

1.1. Leading order

The leading order B–JIMWLK equation is expressed in terms of Wilson
lines U(x) at a position x of the transverse plane of the collision. It is
numerically convenient to employ its formulation as a stochastic Langevin
equation [16–18]. The target rapidity is discretized in small steps ϵ, ηn = nϵ,
and the rapidity nϵ of a Wilson line is denoted by the lower subscript, Unϵ(x).
Thus, the Wilson line at the next step of the evolution ηn+1 = (n + 1)ϵ is
given by [19]

U(n+1)ϵ(x) = exp
(
i
√
ϵ αL

n+1(x)
)
Unϵ(x) exp

(
−i

√
ϵ αR

n+1(x)
)
, (1)
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and the Langevin noise is hidden in the two-dimensional vector of matrix-
valued variables ξi(z). These random vectors are generated anew on each
site of the lattice in each step of the evolution

ξ(x) = (ξx(x), ξy(x)) =
(
ξxa(x)t

a, ξyb (x)t
b
)

(4)

from a normal distribution with the unit width. The vectors ξ(x) are un-
correlated in x, therefore〈
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= δabδ
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The leading order kernel Ki
xz is given by

Ki
xz =

(x− z)i

(x− z)2
. (6)

The numerical studies of this formulation of the JIMWLK equation have
been performed by several groups [18, 20–24] and it was shown that the
dynamics of the dipole amplitude can be reproduced by the large-Nc BK
equation. Typically, in the numerical framework, the transverse plane is
discretized into a lattice of points spaced by a in each direction and of
the finite total volume, i.e. the extent in each direction is set to L = Na,
with N natural. In order to keep translational symmetry periodic boundary
conditions are imposed, effectively turning the plane into a torus.

1.2. Kinematical constraint

The kinematically enhanced subleading corrections were first discussed
in Refs. [25–27]. Their implementation in the BK equation was proposed
in Ref. [28] and subsequently, their position-space representation was pre-
sented in Refs. [29–31]. Later, it was proposed in Ref. [32] to implement
the kinematical constraint in the framework described above by introduc-
ing a couple of modifications to the Wilson lines U(x) and to the αL

n(x)
and αR

n (x) variables while maintaining the overall structure of the Langevin
equation (1). The Wilson lines receive an additional index r indicating the
scale of the very first dipole

U(x, η) → U(x, r, η) , (7)

where r is the distance at which the dipole correlation function

S(r, η) =
1

Nc

〈〈
trU †(x, r, η)U(x+ r, r, η)

〉
x

〉
CGC

(8)

is being evaluated. Here, we use translational symmetry to average over all
possible sites x and ⟨. . . ⟩CGC denotes the typical Color Glass Condensate
averaging over the initial color sources configurations. Subsequently,
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where

δrrxz = max

{
0, ln

r2

(x− z)2

}
, (11)

Rr
xz = max{r, |x− z|} . (12)

Note that these equations differ from similar expressions presented in
Ref. [32], where the evolution was described in terms of the dipole rapidity Y .
Here, we follow Refs. [33, 34] and work in the target rapidity variable η.

The effect of the modifications in Eqs. (9) and (10) is that the θ function
cuts out a part of the phase space in the convolution. At η = 0, it removes
a disc of radius r around the site x which then shrinks for η > 0. Addition-
ally, Eq. (10) contains Wilson lines at a shifted rapidity, i.e. when δrrxz > 0,
it involves Wilson lines from earlier (past) stages of the simulation.

The numerical implementation of Eqs. (9) and (10) into the JIMWLK
equation (1) yields unexpected results since in some cases, the obtained evo-
lution of the dipole amplitude with the kinematical constraint is faster than
the evolution at leading order. The purpose of the rest of this contribution
is to try to identify the possible reasons for such behavior.

1.3. Recovering BK equation

Taking the definition of S(r, η + ϵ) from Eq. (8), expanding for small ϵ,
and using Eq. (1) for each Wilson line individually is expected to yield an
evolution equation for the dipole amplitude S(r, η) with the kinematical
constraint [32]. This turns out not to be a straightforward step and one has
to make additional assumptions. Here, we concentrate on a new class of
correlation functions which appear at these intermediate stages and which
contain Wilson lines at different values of rapidity. It is our suspicion that
the unexpected behavior of these functions may corrupt the convergence
of the results to the known solutions of the BK equation with kinematical
constraint.

2. Correlation functions nonlocal in the target rapidity

In order to simplify the presentation in the following, we discuss only
two representatives of the correlation functions nonlocal in the target ra-
pidity. We denote them by C and W . Moreover, at the first step, we
study their behavior with the leading order evolution equation, hence we
use the Wilson lines U(x) as building blocks, and their evolution is given by
Eq. (1). Although such correlation functions appear in the construction of
the kinematical constraint in Ref. [32], to our knowledge, it is the first time
that they have been evaluated numerically and studied in the framework of
leading order JIMWLK equation.
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2.1. Definitions

The rapidity correlator C(x, η) is defined as

C(x, η) =
1

Nc

〈
trU †(x, 0)U(x, η)

〉
CGC

. (13)

In many cases, we equivalently consider the volume averaged version, C(η) =
1
V

∑
xC(x, η) which, due to the maintained translational symmetry, should

be equal. Similarly, we define the correlator W (r, η)

W (r, η) =
1

Nc

1

V

∑
x

〈
trU †(x, 0)U(x+ r, η)

〉
CGC

. (14)

Obviously, W (0, η) ≡ C(η) as well as W (r, 0) ≡ S(r, 0).

2.2. Large-Nc limit

In order to establish the dependence on η, we expand C(η + ϵ) and
W (r, η + ϵ) in ϵ

C(x, η + ϵ) =
1

Nc

〈
trU †(x, 0)U(x, η + ϵ)

〉
, (15)

W (r, η + ϵ) =
1

Nc

〈
trU †(x, 0)U(x+ r, η + ϵ)

〉
. (16)

Since only one of the Wilson lines depends on η, the derivation is much sim-
pler than that for S(r, η). After some algebra, we obtain a set of equations

∂W (x− y, η)
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Kxz (S(x− z, η)W (z − y, η)−W (x− y, η)) , (17)

∂C(η)
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z

Kxz (S(x− z, η)W (z − x, η)− C(x, η)) , (18)
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∂η
=
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2π

∫
z

Mxyz (S(x− z, η)S(z − y, η)− S(x− y, η)) . (19)

Several comments are in order now. First, Eq. (19) is the well-known lead-
ing order BK equation for the dipole amplitude. It is a closed equation that
involves only S so it can be solved without any reference to the other corre-
lation functions. That is not the case for the other two equations, Eqs. (17)
and (18), which mix C, W , and S. In principle, C and W may be complex,
however, we see that if the initial condition is real, then the evolution does
not introduce imaginary parts, therefore the correlation functions W , C,
and S always remain real in this approximation.
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2.3. Initial slope

It is instructive to investigate the initial behavior of the evolution equa-
tions (17), (18), and (19). For simplicity, we choose a Gaussian initial con-
dition, i.e.

S(r, 0) = exp
(
−r2/

(
2R2

init

))
,

and consequently C(0) = 1 , W (r, 0) = exp
(
−r2/

(
2R2

init

))
. (20)

In the following, we express all dimensional quantities in units of Rinit which
is equivalent to setting Rinit = 1. In that case, we can evaluate the right-
hand side of these evolution equations and calculate the initial slopes. The
most insightful is the initial slope of C

∂C(η)

∂η
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η=0

=
ᾱs

2π

∫
z

Kxz

(
exp

(
−|x− z|2

)
− 1

)
. (21)

This has clearly an infrared divergence. In the numerical setup when the
problem is discretized on a two-dimensional torus, this divergence is regu-
lated by the volume of the torus. Intuitively, this may be expected, because
as we make the torus larger and larger, the convolution gathers more and
more noise which decorrelates C faster. Note that this divergence is a direct
consequence of the infinite range of Kxz and does not hold in the complete
theory with color confinement.

The expressions for the initial slope allow for an independent check of
our numerics. As a test, we evaluate the continuous integral in Eq. (17)
using the Mathematica package and compare with our numerical discretized
solution. We also include the results of the initial slope extracted from the
full simulation of Eq. (1). We present the results in Fig. 1. We observe
that the semi-analytic results from Mathematica agree with our numerical
solution. Both of them correspond to the large-Nc limit and are about 10%
above the results from the full simulation of Eq. (1) as expected. Hence, we
also implemented the nonlocal Gaussian approximation valid for finite Nc

which was derived in Ref. [35] for equal-η correlators of four Wilson lines.
That correction eliminates the 10% deviation between the full simulation
and the large-Nc result. We conclude that we have our numerics under
control.
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Fig. 1. The initial slope of W as a function of the distance r = |x − y| obtained
from the continuous integral performed by Mathematica, our discretized numerical
estimate from Eq. (17), and from the full simulation of Eq. (1).

2.4. Full η dependence

In Fig. 2, we present the function C(η) obtained from the full simulation
of Eq. (1) at two different lattice spacings. We observe that both solutions
yield results close to each other and that the function C decays very quickly
to zero. The simulations were performed in a volume of linear extent of
96Rinit. Had we a larger linear extent, C would decay faster. Consequently,
the same is true for the W (r, η) function which vanishes for large η.

As it was stated in Section 1.3, for a certain range of arguments η and r,
the full simulation of the JIMWLK equation with the kinematical constraint
yields a dipole amplitude that evolves faster than the dipole amplitude ob-
tained at leading order. This indicates that the dynamics of the improved
JIMWLK equation does not reproduce the BK equation’s expected dynamics
with kinematical constraint. One of the necessary assumptions that allows
to derive the improved BK equation from the improved JIMWLK equation
is that the correlations function nonlocal in rapidity can be approximated
by equal-rapidity correlation functions where both Wilson lines are taken
at the smaller rapidity. For example, that would mean C(η) ≈ C(0) = 1.
This is not the case in full simulation as we have clearly demonstrated with
Fig. 2.
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Fig. 2. The correlation function C(η) evaluated for two discretizations L/a = 96

and L/a = 128 with the volume of the torus set to L = 96Rinit, where Rinit is the
saturation radius of the initial condition.

3. Conclusions

In this contribution, we report on the progress in implementing the kine-
matical constraint into the Langevin formulation of the JIMWLK equation.
The current implementation, however, leads to some unexpected results:
the dipole amplitude extracted from the full numerical simulations of the
improved JIMWLK equation does not reproduce the expected behavior pre-
dicted by the associated improved BK equation. The reduction of the im-
proved JIMWLK equation to the BK equation relies on the fact that some
correlation functions nonlocal in rapidity can be approximated by their lo-
cal counterparts where both Wilson lines are taken at the same rapidity, the
smallest of the two. We have proposed simplified examples of such correla-
tion functions and derived their evolution equations. By solving numerically
these evolution equations, we found that the mentioned assumption is not
fulfilled in our numerical setup, i.e. for example, the correlation function
C(η) decays rapidly to zero, whereas it was expected to be approximately
equal to 1. Our results suggest that the role of correlation functions non-
local in the rapidity variable has to be further investigated both in the BK
equation and JIMWLK equation frameworks.
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