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The proposed future lepton collider experiments will reach an unprece-
dented level of precision for electroweak pseudo-observables. To ensure
the success of these experiments, the corresponding theoretical uncertainty
must be at least of the same order if not lower. One dominant source of
uncertainty is due to the treatment of photon radiation and the potentially
large logarithms which need to be resummed. In this work, we present
the Yennie–Frautschi–Suura theorem and its implementation in the Sherpa
Monte-Carlo framework. In particular, we focus on the automated inclusion
of next-to-leading order electroweak corrections.
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1. Introduction

With an unprecedented amount of data gathered, the Large Hadron Col-
lider (LHC) continues to provide a rich environment that allows us to test
further and scrutinise our knowledge of fundamental particles and their in-
teractions with matter. The discovery of the Higgs boson by the ATLAS [1]
and CMS [2] collaborations provided conclusive validation of spontaneously
broken gauge theories as the construction principle underpinning our under-
standing of Nature, with the Standard Model (SM) of particle physics as
its manifest realization. To date, there has not been any direct discovery
of physics beyond the SM at the LHC. Still, some observations cannot be
fully explained within its framework: for example, the observation of non-
zero neutrino masses, dark matter and energy, and the anti-matter–matter
asymmetry.

While the LHC, and potential hadron collider successors, may yet pro-
vide a deeper understanding of the nature of the Higgs boson, a future
lepton–lepton collider or “Higgs factory” could provide unprecedented
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measurements of the electroweak nature of the SM and thus provide an al-
ternative experimental avenue for the community to explore [3]. Due to their
beams composed of elementary particles, unlike a hadron machine, a lepton–
lepton collider has a very clean initial state, which facilitates measurements
of electroweak pseudo-observables (EWPO) [4] with unprecedented preci-
sion.

To take full advantage of these highly precise machines, the correspond-
ing theory uncertainties have to be smaller or, at least, match the size of
the experimental ones, see Table 1 for some examples. There are two main
types of theory uncertainties that need to be addressed by the community
for the successful analysis of the experimental results: parametric uncer-
tainties, which reflect our limited knowledge of the fundamental SM input
parameters, and uncertainties due to missing higher-order terms in our per-
turbative calculations. A large source of intrinsic theoretical uncertainties
are corrections due to QED radiation, where improvements by factors of
2–100, depending on the observable, are mandatory to reduce the QED
uncertainties to an acceptable level. This demand reflects the simple fact
that QED effects of the order of 0.1%, which could be safely ignored at LEP,
turn into limiting factors in the full analysis of experimental results at future
Higgs factories.

Table 1. The current systematic and statistical uncertainties on QED sensitive
observables, with terms in {. . . } denoting the contributions to QED alone. The
FCC-ee uncertainty estimates have been taken from [5], the overall table has been
reproduced from [6].

Observable Where from Current (LEP) FCC (stat.) FCC (syst.) Now
FCC

MZ [MeV] Z linesh. [7] 91187.5± 2.1{0.3} 0.005 0.1 3
ΓZ [MeV] Z linesh. [7] 2495.2± 2.1{0.2} 0.008 0.1 2

RZ
l = Γh/Γl σ(MZ) [8] 20.767± 0.025{0.012} 6×10−5 1×10−3 12
σ0
had [nb] σ0

had [7] 41.541± 0.037{0.025} 0.1×10−3 4×10−3 6
Nν σ(MZ) [7] 2.984± 0.008{0.006} 5×10−6 1×10−3 6
Nν Zγ [9] 2.69± 0.15{0.06} 0.8×10−3 < 10−3 60

sin2 θeffW×105 Alept
FB [8] 23099± 53{28} 0.3 0.5 55

sin2 θeffW×105 ⟨Pτ ⟩, Apol,τ
FB [7] 23159± 41{12} 0.6 < 0.6 20

MW [MeV] ADLO [10] 80376± 33{6} 0.5 0.3 12
AMZ±3.5GeV

FB,µ
dσ

d cos θ
[7] ± 0.020{0.001} 1.0×10−5 0.3×10−5 100

In Sherpa, as in many other Monte Carlo event generators [11–13], this
has so far been included through the structure function approach [14] which
resums the large logarithms associated to multiple (collinear) photon emis-
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sion through the Dokshitser–Gribov–Lipatov–Altarelli–Parisi (DGLAP)
equations [15–18]. While Sherpa implements the well-known leading-order
accuracy [19–21], in recent years, the structure functions have been extended
to next-to-leading logarithmic accuracy [22, 23]. However, instead of further
improving the structure function approach implementation in Sherpa, we will
here calculate the emission of soft photons and resum the associated loga-
rithms in the Yennie–Frautschi–Suura formulation (YFS) [24]. In particular,
we will show how to include next-to-leading order (NLO) corrections auto-
matically in this framework. The use of YFS in Monte Carlo simulations
has been pioneered by the work of Jadach and his collaborators [25–30]. The
sophisticated and technical approach that they used allow the LEP experi-
ments to push the frontier of precision measurements and will be crucial to
the success of any future lepton collider.

2. Theory

In their seminal paper Yennie, Frautschi, and Suura [24] showed that,
to all orders, the infrared divergences (IR) associated with the emission
of real and virtual photons can be resummed to infinite order. With this
method, one can rewrite the entire perturbative series into a sum of IR
finite terms. This allows you to include higher-order perturbative corrections
in a systematic way. In addition, the YFS approach explicitly generates
resolved photons, with a resolution criterion given by an energy and angle
cut-off. This allows us to generate the full kinematic structure of scattering
events, leading to a straightforward implementation of the YFS method as
both cross-section calculator and event generator.

Summing over all real and virtual photon emissions for an arbitrary
2 → N scattering, the total cross section is given by

dσ =

∞∑

nγ=0

1

nγ !
dΦQ

[ nγ∏

i=1

dΦγ
i

]
(2π)4 δ4




2∑

i=1

pi −
N+2∑

j=3

qj −
nγ∑

k=1

kk




∣∣∣∣∣∣

∞∑

n̄γ=0

Mn̄γ+
1
2
nγ

nγ

∣∣∣∣∣∣

2

, (1)

where the outgoing momenta qj emerge from the original pj after the effect
of the real photon emissions has been taken into account. Here, dΦQ denotes
the modified final-state phase-space element, the dΦγ

i are the phase-space
elements spanned by the nγ real photon momenta ki emitted off the lead-
ing order configuration. Similarly, n̄γ counts the number of virtual photons
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added to it. The indices i and j matrix elements Mj
i indicate the number

of real photons, i, and the overall additional orders in α, j, relative to the
Born configuration.

To analyse the structure of the resummation and its fixed-order improve-
ments, consider the case of a single virtual photon. In the soft limit, the
matrix element factorises as

M1
0 = αBM0

0 +M1
0 . (2)

Therein, α is the QED coupling constant, B is an integrated off-shell eikonal
encoding the universal soft-photon limit [31], and M0

0 = M0
0 is the lead-

ing order matrix element. Then, the finite remainder M1
0 is the infrared-

subtracted matrix element including one virtual photon. YFS showed that
the insertion of further virtual photons leads to a power series and due to
the Abelian nature of QED and the absence of collinear singularities in the
soft-photon limit, this can be further generalised to a squared matrix ele-
ments that include any number of additional real photon emissions, such
that ∣∣∣∣∣∣

∞∑

n̄γ=0

Mn̄γ+
1
2
nγ

nγ

∣∣∣∣∣∣

2

= exp(2αB)

∣∣∣∣∣∣

∞∑

n̄γ

M
n̄γ+

1
2
nγ

nγ

∣∣∣∣∣∣

2

. (3)

By construction, M n̄γ+
1
2
nγ

nγ is completely free of soft singularities due to vir-
tual photons but it will still contain those due to real photons. Similarly, for
the real-photon emissions, the factorization occurs at the level of squared
matrix elements and by extracting all real-emission soft-photon divergences
through eikonal factors, the squared matrix element for any nγ real emis-
sions, summed over all possible virtual photon corrections, can be written as

(
1

2(2π)3

)nγ

∣∣∣∣∣∣

∞∑

n̄γ=0

M
n̄γ+

1
2
nγ

nγ

∣∣∣∣∣∣

2

= β̃0

nγ∏

i=1

[
S̃ (ki)

]

+

nγ∑

i=1

[
β̃1 (ki)

S̃ (ki)

] nγ∏

j=1

[
S̃ (kj)

]
+

nγ∑

i,j=1
i<j

[
β̃2 (ki, kj)

S̃ (ki) S̃ (kj)

] nγ∏

l=1

[
S̃ (kl)

]
+ . . .

+β̃nγ−1

(
k1, . . . , ki−1, ki+1, . . . , knγ

) nγ∑

i=1

S̃ (ki) + β̃nγ

(
k1, . . . , knγ

)
, (4)

where

β̃nγ =

∞∑

n̄γ=0

β̃
n̄γ+nγ
nγ . (5)
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The β̃
n̄γ+nγ
nγ are the infrared-finite squared matrix elements. They corre-

spond to the Born level process plus emissions of nγ real and n̄γ virtual
photons of the order of nγ + n̄γ in the QED coupling α. To recombine all
terms into an expression for the inclusive cross section and facilitate the
cancellation of all infrared singularities, it is useful to define an unresolved
region Ω in which the kinematic impact of any real-photon emission is unim-
portant. Integrating over this unresolved real emission phase space gives the
integrated on-shell eikonal B̃,

2αB̃(Ω) =

∫
d3k

k0
S̃ (k) [1−Θ(k,Ω)] , (6)

which contains all infrared poles due to real soft photon emission. Substitut-
ing this expression back into Eq. (1), the contributions originating from B̃
for all nγ photons again exponentiate. This yields

dσ =
∞∑

nγ=0

eY (Ω)

nγ !
dΦQ

[ nγ∏

i=1

dΦγ
i S̃ (ki) Θ (ki, Ω)

]

×


β̃0 +

nγ∑

j=1

β̃1(kj)

S̃ (kj)
+

nγ∑

j,k=1j<k

β̃2(kj , kk)

S̃ (kj) S̃ (kk)
+ · · ·


 , (7)

with the YFS form factor

Y (Ω) = 2α
[
B + B̃(Ω)

]
. (8)

Therein, all infrared singularities originating from real and virtual soft-
photon emission, contained in B̃ and B, respectively, cancel, leaving a finite
remainder.

In figure 1, we show the energy-dependent Higgs production cross section
in various channels, and compare the results at the Born level with those
obtained by including QED ISR using YFS. The QED ISR tends to increase
the cross sections at high c.m. energies in those processes that are driven
by the exchange of an s-channel propagator, such as e+e− → ZH and the
top-associated production, while it tends to decrease the cross section at
their peaks. The increase can be thought of as the effect of some form
of a “radiative return” to the peak, while the decrease at the peak can be
understood as a “washing out” of the large peak cross section by reducing the
c.m. energy due to the ISR. Conversely, QED ISR decreases the production
cross sections throughout in those processes that are t-channel-dominated.
With these results, we can also see how our implementation of the YFS
algorithm is process-independent [31].
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Fig. 1. Total cross section for the HX production. Dashed lines represent the
Born-level cross section, while the solid includes YFS resummation.

2.1. Virtual corrections

We can now exploit the IR finiteness of individual β̃ terms to incor-
porate the one-loop electroweak corrections for various e+e− processes and
consistently match them with the YFS resummation. The one-loop IR finite
residue is given by

β̃1
0 (Φn) = V (Φn)−

∑

ij

Dij (Φij) . (9)

In equation (9), the first term represents the full one-loop correction, which
may contain IR divergences that can be regulated using a fictitious pho-
ton mass or dimensional regularization. The second term corresponds to
the YFS subtraction for virtual divergences, where we sum over the rele-
vant dipoles contributing to the calculation. This term is computed using
massive regularization, requiring the inclusion of a fictitious photon mass.
Alternatively, dimensional regularization can be used for this subtraction.
However, since we are dealing with IR divergences arising solely from QED,
the introduction of massive regularization poses no issues. In figure 2, we
show how the YFS subtraction behaves for the virtual amplitudes. We con-
sider the e+e− → µ+µ− process and calculate the full IR divergent one-loop
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corrections to this process with Recola for various fictitious photon masses.
In Sherpa, we then calculate the subtraction term, consisting of six dipole
terms times the Born, and subtract the two quantities from each other. We
see that the IR divergences, which appear as logarithms of the photon mass,
cancel exactly between the two terms leading to an IR finite results.

10−10 10−8 10−6 10−4 10−2 100 102 104 106 108 1010

mγ [GeV]

−2

−1

0

1

2G
ev
−

2

e+e− → µ+µ−

V(Φn) Recola
∑Dij(Φij) Sherpa

V(Φn)−∑Dij(Φij)

Fig. 2. Cancellation of the virtual IR divergences using YFS subtraction.

2.2. Real corrections

The one real photon correction to the Born process can be rendered IR
finite within the YFS framework as follows:

β̃1
1 (Φn+1) =

1

2(2π)3

∣∣∣∣M
1
2
0

∣∣∣∣
2

− S̃ (k) β̃0
0 (Φn) , (10)

where M
1
2
0 is the O(α) real correction and since it is purely a tree-level

amplitude, it can also be calculated automatically using modern amplitude
methods. There exist many automated tools [12, 32–35] capable of calculat-
ing these amplitudes. For this study, we use Sherpa’s internal matrix-element
generators (MEGs), namely AMEGIC [32] and COMIX [33]. Both MEGs can
calculate the squared amplitudes for complicated final states as chains of
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subsequent decays in the narrow-width approximation, taking all effects due
to spin and color correlations into account. They have already been used
in the automated calculation of the β̃0

0 terms [31]. In figure 3, we show the
behaviour of equation (10) as we take the soft limit. For this comparison,
we take a random phase-space point with one sufficiently hard photon and
calculate its contribution to the real correction. We then artificially lower
the energy of this photon, remap the phase-space point to compensate for
this, and reevaluate equation (10). We continue to do this until the photon
reaches the IR cutoff, below which the subtraction becomes unstable. This
instability is not physical and if one so desires it can be pushed to lower val-
ues simply by changing the cutoff value. Figure 3 shows that as the photon
becomes softer and softer, the real correction converges to the subtraction
term as expected.
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Fig. 3. IR finiteness of the real corrections as the photon approaches the soft limit.

3. Conclusion

Given the expected precision at the proposed Higgs factories, the need
to improve the accuracy of Monte Carlo tools is a high priority for the the-
ory community. The large QED errors will require dramatic improvements
to ensure we can match the experimental precision. The resummation of
potentially large logarithms will be mandatory to reach the theoretical pre-
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cision needed at Higgs factories. In addition to the resummation, match-
ing to higher-order perturbative corrections will also be required. We have
shown that the YFS algorithm can be implemented in an automated process-
independent manner. This not only allows us to resum, to all orders, of soft
logarithms but also explicitly generates resolved photons. With this sophis-
ticated phase-space treatment, we are able to automate NLO real corrections
with a subtraction scheme that is highly stable in the soft limit. Addition-
ally, we have shown that the inclusion of virtual corrections can be achieved
using automated one-loop providers with an automated subtraction scheme
implemented in Sherpa. It is envisioned that this approach will be extended
to NNLO, however the limitations for this will be the availability of two-loop
electroweak corrections.

This work is funded by grant No. 2023/50/A/ST2/00224 of the National
Science Centre (NCN), Poland and also by the Priority Research Area Digi-
world under the program Excellence Initiative — Research University at the
Jagiellonian University in Cracow.
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