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The consistent combination of Next-to-Leading-Order (NLO) pertur-
bative QCD with the logarithmic resummation provided by parton shower
algorithms (‘NLO matching’) is an indispensable tool for LHC phenomenol-
ogy. Two methods for achieving this have been widely adopted: Mc@Nlo
and Powheg. We summarise a third method, KrkNLO, its implemen-
tation in Herwig 7, and compare the results it produces with comparable
results from Mc@Nlo.
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1. Introduction

‘NLO matching’ methods modify an inclusive, low-multiplicity fixed-
order NLO calculation to produce predictions for exclusive high-multiplicity
observables, retaining the perturbative accuracy of the former (up to power
corrections) but augmenting it with the logarithmic resummation of a par-
ton shower to provide the flexibility of exclusive predictions. The domi-
nant, long-established methods are Mc@Nlo [1] and Powheg [2–4]. The
KrkNLO method was introduced in [5–7] and uses a modified factorisa-
tion scheme, the Krk scheme, to achieve NLO accuracy via a multiplicative
reweight alone. Here we summarise the method and its implementation
in Herwig, and present a comparison between KrkNLO and Mc@Nlo for
diphoton production.
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2. The KrkNLO method

The KrkNLO method [5–8] solves the NLO matching problem by exploit-
ing the freedom to choose a parton distribution function (PDF) factorisation
scheme (FS) for QCD calculations at NLO and higher. The factorisation
scheme used, the Krk scheme [9], is defined by the requirement that the
collinear contributions to the partonic cross section, arising for a ‘dipole
shower’ [10, 11] from the Catani–Seymour P and K operators [12], are ex-
actly cancelled by the choice of factorisation scheme: in effect, these terms
are moved from the partonic cross section into the PDFs.

As an algorithm, the KrkNLO method may be summarised as:

for all Born events do shower
if first emission generated, from kernel (α) then

w ← w × R(Φm+1)

P
(α)
m (Φm+1)

end if
w ← w ×

[
1 + αs(µR)

2π

(
V (Φm;µR)
B(Φm) + I(Φm; µ̃R)

B(Φm) +∆FS
0

)]
end for

The shower is then allowed to run to completion. Further details are
available in [8].

Here Φm denotes the Born phase-space and Φm+1 the real-emission phase-
space. B, R and V denote the relevant Born, real, and virtual matrix ele-
ments respectively; P (α)

m the emission kernel used in the shower algorithm
to generate the chosen branching of generalised type (α); µR the renormal-
isation scale, and I the contribution from the shower Sudakov, integrated
over the radiative phase-space, containing no residual collinear dependence.

This achieves NLO accuracy if and only if convolved with PDFs in the
‘Krk’ factorisation scheme [9], which is defined to compensate for the ad-
ditional collinear terms arising at O (αs) from the parton shower Sudakov
factor. A detailed derivation illustrating NLO accuracy can be found in [8].
This scheme has so far been formulated only for colour-singlet final states.

In order for the full real-emission phase-space Φm+1 to be populated by
the reweighted first shower emission, the shower must be constructed to have
full phase-space coverage (i.e., no ‘dead zones’). The shower starting scale
must also be chosen to coincide with the maximum kinematically-attainable
scale for each dipole. This can be relaxed by using the Mc@Nlo method
to fill in the remaining phase-space [13].

Numerically, the KrkNLO procedure shares with Powheg the advantage
of generating no negative-weighted events. These arise in the Mc@Nlo
method due to its use of (potentially over-)subtracted events in the hard
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process. Unlike Powheg, in KrkNLO this is achieved without requiring the
modification of the shower kernel (and by consequence, the Sudakov factor)
for the first parton-shower emission, the exponentiation of which has been
found to be potentially problematic [14] and to require manual damping [15].

3. Implementation and validation

We have implemented the KrkNLO algorithm in Herwig 7 [16–18], a
multi-purpose Monte Carlo Event Generator which, through the Matchbox
module [19] provides NLO QCD predictions, matched automatically and
consistently to either the dipole [11, 19] or the angular-ordered shower [20],
using either the Mc@Nlo or Powheg methods, within the Matchbox mod-
ule [19].

For KrkNLO we use the Herwig dipole shower. The diphoton process has
been implemented manually as an intermediate step to full automation; the
fully-automated method, suitable for any colour-singlet final state, is being
validated and is expected to be the subject of an upcoming publication.

We have validated the implementation numerically by numerically cal-
culating, and unweighting by, the Sudakov factor generated by the veto
algorithm [21–23] and comparing the resulting distributions numerically to
those arising from the fixed-order real-emission matrix element. Plots illus-
trating excellent agreement are shown in Fig. 1. The virtual reweight can
be isolated by setting the shower cut-off scale sufficiently high to prohibit all
shower radiation; the matrix elements have been tested phase-space-point by
phase-space-point against OpenLoops [24] and distributions corresponding to
the Born and/or virtual matrix elements have been compared numerically
to those calculated by Matchbox; plots illustrating excellent agreement are
shown in Fig. 2.
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Fig. 1. Validation of the real weight by unweighting by the Sudakov factor to isolate
the real matrix element within the KrkNLO implementation.
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Fig. 2. Validation of the virtual weight V + I for the qq̄-channel.

4. Comparison with MC@NLO

Alternative matching methods all achieve formal NLO perturbative ac-
curacy, but differ by formally-higher-order terms which may nevertheless be
numerically significant, especially in regions of phase-space where the Su-
dakov factor is large (and therefore significantly different from its truncated
perturbative expansion). In [8], we perform a detailed comparison of the
KrkNLO method to the Mc@Nlo method with three different choices of
shower starting-scale Q(Φ):

— a ‘power-shower’ with Q(Φm)=Qmax (Φm) and Q(Φm+1)=Qmax (Φm+1);
— a ‘default’ shower with Q(Φm)=

√
ŝ12≡Mγγ and Q(Φm+1)=pj1T , and

— a ‘DGLAP-inspired’ choice in which the shower starting-scale consis-
tently matches the factorisation scale, Q(Φm) =

√
ŝ12 and Q(Φm+1) =√

ŝ12.

For the KrkNLO method, the shower starting-scale is fixed to Qmax (Φm),
as required to populate the entire real-emission phase-space. Because all
KrkNLO events start from a generated Born phase-space configuration,
Q(Φm+1) is set by the shower algorithm to pT,1, the transverse momentum of
the first generated emission with respect to the axis of its emitter–spectator
pair, in the rest frame of the emitter–spectator pair.

Concretely, we present results with fiducial cuts close to those used by
Atlas for LHC Run 2 at 13 TeV [25]:

pγ1T > 40 GeV , pγ2T > 30 GeV , (1a)
∆Rγγ > 0.4 , |yγ | ∈ [0, 2.5) , (1b)

Eiso,part
T < 0.1 pγT within cone ∆R ⩽ 0.4 . (1c)

In place of the experimental photon isolation, we use smooth-cone (‘Frix-
ione’) isolation [26] with the ‘tight’ isolation parameters from the 2013 Les
Houches Accords [27]. Where jet distributions are presented, we use the
anti-kT algorithm [28] with clustering radius of 0.4 and a pT cut of 1 GeV.



The KrkNLO Method for Parton Shower Matching 5-A9.5

We use CT18NLO PDFs [29], either in the MS scheme or transformed into
the Krk scheme; to match, we adopt αs(MZ) = 0.118 consistently through-
out. We use the Herwig 7 default dipole-shower cut-off scale pcutT = 1 GeV.
Within Herwig, we disable both hadronisation and the RemnantDecayer so
the final-state of the hard-process is the only source of final-state QCD par-
tons and the hard-process is the only input into the parton shower initial
conditions.

In Section 4.1, we present results for the shower truncated to one emis-
sion; at this point, the role of the matching algorithm has concluded, and
influences the subsequent shower evolution only through the shower start-
ing scale for the second emission. In Section 4.2, we present results for
the full shower, untruncated. A more detailed analysis including additional
distributions is available in [8].

4.1. First-emission only

In the one-emission case, the shower starting-scale within Mc@Nlo for
parton shower emissions from ‘H’-events, Q(Φm+1), does not enter the cal-
culation, as the shower is truncated before any such emissions can be gener-
ated. In this case, the second (‘default’) and third (‘DGLAP’) choices out-
lined above are identical. In practice, when truncated to a single emission,
the sensitivity to the different choices of Q(Φm) between the ‘power’ and
‘default’/‘DGLAP’ alternatives are also very small (i.e., within the Monte
Carlo uncertainties). We therefore present only the power-shower result in
this section and do not distinguish between them further.

In Fig. 3, we show the dσ/dpj1T and dσ/dMγγ distributions. We ob-
serve good agreement between the predictions, with both KrkNLO and
Mc@Nlo reproducing the NLO fixed-order pj1T -distribution. At low-pj1T ,
the Sudakov factor from the shower emission used to populate the real-
emission phase-space in the KrkNLO method leads to suppression relative
to Mc@Nlo (which is already suppressed relative to the fixed-order matrix-
element, which diverges in the pj1T → 0 limit).

This can be seen in more detail double-differentially in Fig. 4, where the
dσ/dpj1T distribution is partitioned into six equal slices according to the value
of ∆ϕγγ . Values of ∆ϕγγ ≈ π correspond to a Born-like configuration (in the
Born kinematics, ∆ϕγγ = π) in which the two photons are approximately
back-to-back, while very small values of ∆ϕγγ imply recoil of the diphoton
system against a hard jet. We see reasonable agreement across phase-space
except for the effect of the Sudakov factor in close-to-Born configurations.
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Fig. 3. ‘Parton level’ (first-emission) comparison of KrkNLO with Mc@Nlo, NLO
fixed-order, and the corresponding first-emission distributions generated by the
parton shower from a leading-order calculation. The shower in each case is a
‘power shower’, i.e. with no phase-space restrictions.
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Fig. 4. ‘Parton level’ (first-emission) comparison of the transverse-momentum dis-
tribution of the hardest jet (here, also parton), dσ/dpj1T , divided into six equal bins
of ∆ϕγγ , generated by KrkNLO, Mc@Nlo, NLO fixed-order, and the correspond-
ing first-emission distributions generated by the parton shower from a leading-order
calculation.
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The dσ/dMγγ distribution shown in Fig. 3 shows agreement consistent
with the NLO accuracy of the methods, with large deviations only in regions
of the distribution that are accurate to leading-order only (Mγγ < 80 GeV).

4.2. Full shower

Phenomenologically-relevant results are obtained by allowing the shower
to run to completion, untruncated. The same two distributions, dσ/dpj1T
and dσ/dMγγ are shown in Fig. 5. In this case, we see that, as expected,
the ‘power’ shower favours the emission of considerably harder jets than the
other options. The KrkNLO distribution is closest to the Herwig ‘default’
shower, and lies between the ‘default’ and ‘DGLAP’ scale choices. The
dσ/dMγγ distributions are in excellent agreement with each other, as might
be hoped, with disagreement again only in the effectively-leading-order re-
gion of Mγγ < 80 GeV. The variable Mγγ is privileged to some extent in all
matching methods since it is preserved by the shower momentum mappings,
through its relationship to the Lorentz invariant sγγ = M2

γγ .
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Fig. 5. Comparison of matched differential cross sections generated by KrkNLO
and Mc@Nlo with the ‘default’, ‘power’-shower and ‘DGLAP’ starting-scales.

Looking at dσ/dpj1T double-differentially in slices of ∆ϕγγ in Fig. 6, we
again see reasonably good agreement between the methods across phase-
space. In general, the KrkNLO distributions lie within the intrinsic un-
certainty spanned by the variation of the shower starting-scale within the
Mc@Nlo method, lying closest to the Herwig ‘default’ scale choice and
generally between the Herwig ‘default’ and the ‘DGLAP’ choices.
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Fig. 6. Comparison of matched differential cross-sections of the transverse-momen-
tum distribution of the hardest jet, dσ/dpj1T , divided into six equal bins of
∆ϕγγ , generated by KrkNLO and Mc@Nlo with the ‘default’, ‘power’-shower
and ‘DGLAP’ starting-scales.

5. Conclusions

In these proceedings, we have summarised the KrkNLO method and
outlined the results of the comparison performed between KrkNLO and
Mc@Nlo matching in [8]. We have further demonstrated that KrkNLO is
capable of producing NLO matched results which lie within the wide scale-
variation band spanned by reasonable choices of scale for one of the main
established alternative methods, Mc@Nlo, and are qualitatively close to
Mc@Nlo when combined with a common choice of shower starting scale.
Since KrkNLO has no shower-scale parameter to vary, it provides a valu-
able independent indication of the matching uncertainty associated with the
choices of scales within Mc@Nlo (analogously, the choice of damping func-
tion/parameters in Powheg).

With the forthcoming publication and public release of the KrkNLO code
within Herwig 7, we hope to demonstrate that KrkNLO is a competitive
method for practical LHC phenomenology, at least for the production of
colour-singlet final-states. We intend to pursue further work studying the
implications of the KrkNLO method for other such processes, with further
comparisons to Mc@Nlo. We remain optimistic about the applicability of
a variant of the KrkNLO method to more complex processes and higher-
orders.
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