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When a resonance lies near the threshold of a heavier channel, an in-
teresting feature can occur. The paradigmatic example employed here is
the scalar–isoscalar f0(980) resonance that couples to the lighter ππ and
heavier KK̄ channels. It is shown that the decay width is given by the sum
or subtraction of the partial decay widths depending on whether the pole
lies in the Riemann sheet that is contiguous with the physical one above
or below the KK̄ threshold, respectively. Next, we show that the usually
disregarded renormalization of bare parameters in the Flatté or energy-
dependent Breit–Wigner parameterizations is essential to extract physical
information. The compositeness of the f0(980) by using a Flatté parame-
terization matched to reproduce the pole properties obtained from the Roy
equations and other analytic constraints is evaluated.
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1. Introduction

A Flatté parameterization [1] is typically used for describing a resonance
that lies near a heavier threshold. Let us denote by i = 1 and 2 the light
and heavy channels, respectively. To fix ideas, think of the f0(980) and the
scalar–isoscalar channels ππ and KK̄, in this order. Then, around the KK̄
threshold, an S-wave amplitude is written as

tij =
g̃ig̃j

E − Ef + i Γ̃1
2 + i

2 g̃
2
2

√
m2E

, (1)

with E being the total energy measured with respect to the two-kaon thresh-
old. The kinematics for the KK̄ channel is treated nonrelativistically. This
parameterization is determined by three bare parameters: The bare coupling
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g̃2, the bare width Γ̃1, and the bare resonance mass Ef . Γ̃1 is related to the
bare coupling g̃1 by

Γ̃1 = g̃21p1 , (2)
where p1 is the ππ momentum at the resonance mass MR = ReER, and
ER is the resonance pole position in Eq. (1). This parameterization was
extensively used in Ref. [2] to study the compositeness of the f0(980) and
a0(980) resonances [3, 4], and revisited in Ref. [5]. An issue in the tradi-
tional way of analyzing the Flatté parameterizations was emphasized in the
latter reference. To illustrate it, we gather in Table 1 the set of Flatté pa-
rameterizations for the f0(980) used in [2]. From left to right, we give the
original reference, binding momentum p2, MR = Re(p22)/mK , the pole width
Γ = −2 Im p22/mK , and the bare parameters. It is striking that for all cases
Γ ≪ Γ̃1. Related to that (as shown below), let us note that all the poles
have Im p2 > 0.

Table 1. The set of Flatté parameterizations for the f0(980) considered in [2, 5].
See the text for more details.

Ref. p2 [MeV] MR [MeV] Γ [MeV] Γ̃1 [MeV] g̃22 Ef [MeV]
[6] −65+ i 97 981 50.8 149 1.51 −84.3
[7] −58+ i 107 975 50.1 196 2.51 −151.5
[8] −84+ i 17 1005 11.6 129 1.31 +4.6
[9] −69+ i 100 981 55.6 253 2.84 −154

Another issue stressed in Ref. [5] concerns the pole determination based
on the Roy equations and other analytical constraints in Ref. [10]

2mK + ER = 996± 7− i 25+10
−6 MeV , g1 = 0.46± 0.04 , (3)

where g1 is the physical coupling to ππ (adopted to our normalization),
obtained from the residue of the partial-wave amplitude at the f0(980) reso-
nance pole. Let us notice that the partial-decay width to ππ can be straight-
forwardly calculated by taking g1 from Eq. (3) into Eq. (2)

Γππ = g21p1 = 100+20
−17MeV [11] , (4)

which is around a factor 2 larger than the pole width Γ from Eq. (3). How
can it be?

2. Interplay with Riemann sheets

The f0(980) lies close to the two-kaon threshold near 1 GeV. Conse-
quently, its physical imprint is largely dependent on the Riemann sheet
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(RS) in which it lies. We characterize the different RSs [12] by the signs of
the imaginary parts of the momenta collected as (±,±), with the 1st(2nd)
sign for p1(p2). In this way, (+,+) is the physical or 1st RS, (−,+) the
2nd RS, (−,−) the third one, and (+,−) the fourth RS. This is because the
square root in the calculation of the momentum as a function of energy has
a right-hand cut. Therefore, when crossing the real energy axis in between
the ππ and KK̄ thresholds, the 2nd RS (−,+) connects smoothly with the
physical one; when the real axis is crossed above the KK̄ threshold, the 3rd

RS (−,−) is the one that connects smoothly with the physical RS.
It is apparent from Table 1 that all the f0(980) poles there are in the 2nd

RS due to the positive sign of Im p2. The pole in Eq. (3) from Ref. [10] is
also in the 2nd RS. This has its importance because of the term ig22p2/2 in
the denominator in Eq. (1). One can consider only one complex E plane by
using the common convention in numerical calculations, like in Fortran, such
that the square root has a left-hand cut. In this way, the 1st RS corresponds
to ImE > 0, and Eq. (1) applies. For ImE < 0 the expressions for the
different RSs are

2nd RS: tij =
g̃ig̃j

E − Ef + i Γ̃1
2 −−−

i
2 g̃

2
2

√
m2E

,

3rd RS: tij =
g̃ig̃j

E − Ef + i Γ̃1
2 +++

i
2 g̃

2
2

√
m2E

. (5)

We have stressed in Eq. (5) the sign in front of p2 =
√
m2E. Then, we see

that in the 3rd RS, the KK̄ and ππ partial-decay widths add up, whereas
in the 2nd RS, p2 flips its sign and the KK̄ contribution is subtracted to the
ππ one to get the pole width. As a result, we have the following relations
between the pole width Γ and the partial-decay widths:

2nd RS: Γ = Γππ − ΓKK̄ , (6)
3rd RS: Γ = Γππ + ΓKK̄ . (7)

The subtraction between the partial-decay widths in Eq. (6) for the pole in
the 2nd RS was first unveiled in Ref. [5]. Two corollaries follow from Eq. (6):
(1) Since Γ > 0, then Γππ > ΓKK̄ ; (2) As Γππ = Γ +ΓKK̄ , then Γππ > ΓKK̄ .

The result in Eq. (6) was then applied in Ref. [11] to the pole position of
the f0(980) in the 2nd RS [10] given in Eq. (3). The fact that Γππ > Γ , cf.
Eq. (4), is now understood as due to the negative contribution of ΓKK̄ to Γ .
Thus, ΓKK̄ = Γππ − Γ = 50+26

−21 MeV, as calculated in Ref. [11]. Another
quantity of interest that was addressed in this reference is the definition of
the total width Γtot = Γππ + ΓKK̄ , which does not coincide with the pole
width Γ = Γππ−ΓKK̄ . The definition of Γtot, the same independently of the
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sheet in which the pole lies, reflects the fact that in an event distribution, the
total sum of resonant events is the sum of events for every channel separately.
We report from Ref. [11] the following results:

Γtot = Γππ + ΓKK̄ = 151+44
−37 MeV ,

BRππ =
Γππ

Γtot
= 0.67± 0.07 ,

BRKK̄ =
ΓKK̄

Γtot
= 0.33± 0.07 ,

rKK̄/ππ =
ΓKK̄

Γππ
= 0.49± 0.11 . (8)

3. Renormalization of bare parameters in phenomenological
parameterizations

Let us illustrate the process for the Flatté parameterization in Eq. (1),
though the same line of argumentation could be applied to an energy-
dependent Breit–Wigner as well. We refer to [5] for the more detailed and
original derivation.

The pole position ER in Eq. (1) near to the KK̄ threshold is [5]

ER = Ef − mK

8
g42 −

i

2
Γ̃ππ + σ

g22
2

√
mK

(
mKg42
16

− Ef +
i

2
Γ̃ππ

)
, (9)

where σ = +1(−1) corresponds to the pole lying in the 2nd(3rd) RS. Next,
it is important to calculate the behavior of the denominator of tij(E) in
Eq. (1) for E → ER. One has that [5]

β ≡ lim
E→ER

E − ER

E − Ef + i Γ̃1
2 + i

2g
2
2

√
m2E

= 4
√

|ER|mkg
4
2 + 16|ER|+ 4σg22

√
2mK(|ER| −MR) (10)

with |ER| =
√
M2

R + Γ 2/4. Therefore, the renormalized or physical cou-
plings in a Flatté parameterization are

gi = β
1
2 g̃i , (11)

such that the physical width to ππ is Γππ = βΓ̃ππ. The renormalized cou-
plings gi are the ones that must be compared with the couplings obtained by
evaluating the residue of a T -matrix, like g1 given in Eq. (3) from Ref. [10].
It is important to stress this point because it is common in the literature to
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use the bare couplings and widths of a Flatté parameterization as physical
ones. To see the dramatic impact of β we show in Table 2 the values of β,
Γππ = βΓ̃ππ, and ΓKK̄ = Γππ − Γ that correspond to the same Flatté anal-
yses as in Table 1. It is obvious from the new results in Table 2 that Γ̃ππ is
very different from the physical one Γππ, and that Γππ > Γ . Thus, Eqs. (6)
and (11) allow to properly extract the physical couplings and widths from a
Flatté parameterization.

Table 2. The β parameter and partial decay widths for the Flatté parameterizations
in Table 1. Notice the smallness of β.

Ref. p2 [MeV] Γ [MeV] β Γππ = βΓ̃ππ [MeV] ΓKK̄ = Γππ − Γ

[6] −65+ i 97 50.8 0.40 59.7 8.9
[7] −58+ i 107 50.1 0.29 56.5 6.4
[8] −84+ i 17 11.6 0.27 67.2 11.6
[9] −69+ i 100 55.6 0.43 55.7 44.1

3.1. Compositeness analysis

Now, let us apply the compositeness relation from Refs. [13, 14] to the
f0(980) pole from Ref. [10]

X = X1 +X2 , X1 = γ21

∣∣∣∣∂G1

∂s

∣∣∣∣
sR

, X2 = γ22

∣∣∣∣∂G2

∂s

∣∣∣∣
sR

. (12)

In this equation, Xi is the partial compositeness of channel i and X is the
total compositeness. Let us recall that a partial compositeness is the weight
of this channel in the composition of the state, and the total compositeness
is the total weight of the meson–meson components. Regarding the different
ingredients in Eq. (12): (1) s is the Mandelstam variable s = P 2, with P
the total four-momentum, and sR = (2mK +ER)

2; (2) The couplings γi are
just proportional to gi, such that γi = gi

√
8πRe sR; (3) The functions Gi(s)

are the relativistic unitarity loop functions

Gi = − 1

16π2
ln

σ(s)− 1

σ(s) + 1
, σ(s) =

√
1−

4m2
i

s
. (13)

To establish a Flatté parameterization requires three parameters (g̃2, Γ̃ππ, Ef ).
From the pole position [10] in Eq. (3), we can fix two parameters, but one
more is still necessary. Then, as in Ref. [5], we take X as the third input, and
calculate the physical quantities as a function of it. It turns out that only
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for X > 0.6, the resulting value of g1 is compatible with Eq. (3). In more
detail, we have (X, g1) = (1, 0.47), (0.8, 0.45), and (0.6, 0.42). In the same
order, X2 = 0.96, 0.76, and 0.57, respectively, with X1 ≲ 0.04 ≪ X2 for all
cases. Therefore, the application of the compositeness relation of Eq. (12)
to a Flatté parameterization required to reproduce the pole properties of the
f0(980) from Ref. [10] leads to the conclusion that this pole is mainly of a
composite nature, with its composition dominated by the KK̄ contribution.

In summary, we have shown that the pole width for a pole lying in the
2nd RS is given by the subtraction of the partial-decay widths. We have also
discussed the renormalization process of the bare parameters in the Flatté
or energy-dependent Breit–Wigner parameterizations. For clarification and
to avoid confusion, phenomenological analyses should provide the renormal-
ized parameters, the physically meaningful ones, which can be worked out
straightforwardly from the bare ones directly employed in these parameter-
izations.

I would like to thank for the partial financial support from the grant
PID2022-136510NB-C32 funded by MCIN/AEI/10.13039/501100011033/
and FEDER, UE.

REFERENCES

[1] S.M. Flatté, Phys. Lett. B 63, 224 (1976).
[2] V. Baru et al., Phys. Lett. B 586, 53 (2004).
[3] J.A. Oller, E. Oset, J.R. Peláez, Phys. Rev. D 62, 114017 (2000).
[4] M. Albaladejo, J.A. Oller, L. Roca, Phys. Rev. D 82, 094019 (2010).
[5] Z.-Q. Wang, X.-W. Kang, J.A. Oller, L. Zhang, Phys. Rev. D 105, 074016

(2022).
[6] R.R. Akhmetshin et al., Phys. Lett. B 462, 380 (1999).
[7] M.N. Achasov et al., Phys. Lett. B 485, 349 (2000).
[8] N.N. Achasov, V.V. Gubin, Phys. Rev. D 63, 094007 (2001).
[9] A. Antonelli, eConf C020620, THAT06 (2002).

[10] R. García-Martín, R. Kamiński, J.R. Peláez, J. Ruiz de Elvira, Phys. Rev.
Lett. 107, 072001 (2011).

[11] V. Burkert et al., Phys. Lett. B 844, 138070 (2023).
[12] J.A. Oller, «A Brief Introduction to Dispersion Relations», Springer Briefs in

Physics, Springer Cham, 2019.
[13] Z.-H. Guo, J.A. Oller, Phys. Rev. D 93, 096001 (2016).
[14] J.A. Oller, Ann. Phys. 396, 429 (2018).

http://dx.doi.org/10.1016/0370-2693(76)90654-7
http://dx.doi.org/10.1016/j.physletb.2004.01.088
http://dx.doi.org/10.1103/PhysRevD.62.114017
http://dx.doi.org/10.1103/PhysRevD.82.094019
http://dx.doi.org/10.1103/PhysRevD.105.074016
http://dx.doi.org/10.1103/PhysRevD.105.074016
http://dx.doi.org/10.1016/S0370-2693(99)00920-X
http://dx.doi.org/10.1016/S0370-2693(00)00705-X
http://dx.doi.org/10.1103/PhysRevD.63.094007
http://dx.doi.org/10.1103/PhysRevLett.107.072001
http://dx.doi.org/10.1103/PhysRevLett.107.072001
http://dx.doi.org/10.1016/j.physletb.2023.138070
http://dx.doi.org/10.1007/978-3-030-13582-9
http://dx.doi.org/10.1103/PhysRevD.93.096001
http://dx.doi.org/10.1016/j.aop.2018.07.023

	1 Introduction
	2 Interplay with Riemann sheets
	3 Renormalization of bare parameters in phenomenological parameterizations
	3.1 Compositeness analysis


