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We report on our recent works on dispersive analyses of ππ → ππ
and ππ → KK̄ scattering data and their use to address two controver-
sial aspects of the f0(1370) and f0(980) scalar mesons. First, we show with
model-independent techniques that the f0(1370) pole does indeed appear in
meson–meson scattering data, although there is tension between its values
in the ππ and KK̄ channels. Second, we explain the proper interpretation
of the f0(980) pole residue, which would otherwise lead to branching ratios
larger than one. We have also provided simple ππ → ππ data parameteri-
zations that implement both features together with other resonances while
respecting various dispersive constraints.
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1. Introduction

After a decades-long debate [1, 2], the existence of a light scalar meson
nonet below 1 GeV is well established (see the “Scalar mesons below 1 GeV”
note in [3]). It is made of the σ/f0(500), K∗

0 (700), a0(980), and f0(980)
resonances, most likely of a predominantly non-qq̄ nature. There seems to be
a second nonet [3] above 1 GeV to which the a0(1450) and K0(1430) belong,
although one too many f0 states seem to exist: the f0(1370), f0(1500), and
f0(1710). This strongly suggests the existence of a singlet glueball state,
most likely mixed among those three f0 resonances.

However, several questions about these states are still a matter of contro-
versy. In this paper, we report on solutions [4, 5] to two of them. First, the
mass and width of the f0(1370) are the worst determined of all these states
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and its associated pole did not appear in the search for poles in the origi-
nal meson–meson scattering data experimental analyses [6]. Second, there
is a huge spread, with often conflicting values, for the f0(980) branching
ratios. There are two generic problems in most determinations of these pa-
rameters, on the one hand, the huge systematic uncertainties in the meson–
meson scattering data, which often appear in incompatible data sets, and
on the other hand, the use of too simple models to extract the resonance
parameters. Both problems can be tackled by dispersively constrained fits
to ππ → ππ,KK̄ data (CFD) [7, 8], which is use as input to answer the two
questions above we are reporting on here.

2. The f0(1370) resonance in meson–meson scattering

Resonances are rigorously defined by their associated poles in the ana-
lytic continuation of amplitudes to the complex plane of the Mandelstam
variable. The use of simple models without the correct analytic structures
(like the Breit–Wigner parameterizations) does not guarantee a correct con-
tinuation, which has often contributed to increasing the confusion about
scalar mesons [1]. Nevertheless, once a description of data with dispersively
constrained amplitudes is obtained, the very same dispersive integrals can
be used to analytically continue the amplitudes to the first Riemann sheet.
However, no poles exist in the first sheet in light meson–meson scattering.
They appear in other sheets, of which the most relevant is the “adjacent” or
contiguous sheet. Its continuation is easily obtained in the elastic regime,
below the KK̄ threshold, profiting from the fact that then the S-matrix in
the “second” sheet is the inverse of itself in the first. This is how the f0(980)
pole parameters were obtained in [9] (together with the σ/f0(500) and the
ρ(770)). However, such a relation cannot be used in the inelastic region,
where other analytic continuation methods must be applied.

Let us note that the Roy-like [10] crossing-symmetric partial-wave dis-
persion relations used in [8] to constraint ππ → ππ partial waves, or in [9]
to obtain the f0(980) pole, only reach, in practice, up to roughly 1.1 GeV.
Unfortunately, this lies too short for the f0(1370). In contrast, the Roy–
Steiner [11] crossing-symmetric partial-wave dispersion relations used in [7]
for ππ → KK̄ reach around 1.47 GeV.

Thus, concerning ππ → ππ data, in [4], we proposed to use Forward
Dispersion Relations (FDRs) to reach the f0(1370) pole from the constrained
fits. Note that such a pole was absent in the original experimental papers,
which has raised concern about the existence of this resonance. FDRs are
in principle applicable up to arbitrarily high energies, although in practice,
we implemented them up to 1.42 GeV for ππ → ππ. In Fig. 1, we show
the most precise FDR, the F 00(s) ≡ (F 0(s, 0) + 2F 2(s, 0))/3 [8], where
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F I(s, t) are the ππ scattering amplitudes with isospin I in the s-channel.
Note that it is well satisfied in the 1.2 to 1.4 GeV region. As a drawback,
since forward scattering contains information from all partial waves, the
analytic continuation of the FDRs displays poles with different spins, which
we determined with other methods. For illustration, we show in the right
panel of Fig. 1 the poles appearing in the continuation of the dispersive
F 00(s) output. They are associated with the scalar f0(1370) and f0(1500)
but also with the tensor f2(1270).

Fig. 1. Left: Fulfillment of the F 00(s) forward dispersion relation. Note that it is
well satisfied in the 1.2 to 1.4 GeV region. Right: The poles of F 00(s) in the lower
half of the second Riemann sheet in the complex

√
s-plane. Figures taken from [4].

In order to avoid specific models, we used two well-known methods for
the analytic continuation in the inelastic regime. Namely, continued frac-
tions [12] and sequences of the Padé approximants [13]. The latter were
less stable in general because the f2(1270) stands between the f0(1370) pole
and the real axis. Higher-order sequences are then required, which need as
input higher(noisy) derivatives, calculated numerically. However, as shown
in the left panel of Fig. 2, continued fractions were remarkably stable in
finding the three poles of the f0(1370), f0(1500), and f2(1270). Note how
the mass and half-width values stay remarkably compatible for the analytic
continuation using continued fractions of the order of N ∼ 7 up to ∼ 50.
Smaller N does not have enough freedom to describe 3 resonances indepen-
dently. Given how different and flexible all these continued fractions are,
the model dependence in the continuation is negligible. Note also that for
such a continuation, we used the dispersive output in an energy segment
near the expected resonances, typically around the 1.2 to 1.4 GeV region.
Together with the uncertainties from the CFD amplitudes, this contributes
to the calculation of error bands, details of which can be found in [4].



6-A13.4 J.R. Pelaez, A. Rodas, J. Ruiz de Elvira

Mass of 𝑓𝑓0 1500

Mass of 𝑓𝑓2 1270

-Γ/2 of 𝑓𝑓0 1500

Mass of 𝑓𝑓0 1370

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝜋𝜋𝜋𝜋 → 𝜋𝜋𝜋𝜋

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝜋𝜋𝜋𝜋 → 𝜋𝜋𝜋𝜋

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝜋𝜋𝜋𝜋 → 𝐾𝐾𝐾𝐾

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝜋𝜋𝜋𝜋 → 𝐾𝐾𝐾𝐾
-Γ/2 of 𝑓𝑓2 1270

-Γ/2 of 𝑓𝑓0 1370

Fig. 2. (Color online) Figures from [4]. Blue/gray bands and cross obtained from
ππ → ππ, red/light gray bands and cross from ππ → KK̄. Left: Mass (M) and
half-width (Γ/2) of different resonances versus the order of the continued frac-
tion N . Right: f0(1370) pole in the complex

√
s ≡ M − iΓ/2 plane. The

light green/pale gray rectangle stands for the 2022 Review of Particle Physics
estimate [15]. For other pole references, see [4, 15].

In addition, in [4], we showed that, although partial-wave Roy-like equa-
tions strictly apply only up to ∼ 1.1GeV, the analytic continuation of their
extrapolation up to higher energies also produced a very compatible pole for
the f0(1370). Since its systematic uncertainty is unknown, we only used it
as a consistency check and to certify that it appears in the scalar–isoscalar
wave. Moreover, the pole also appears in the analytic continuation of the
simple “global parameterization” that we provided in [14], which mimics
the dispersive description of partial-wave data together with the dispersive
σ/f0(500), f0(980), and ρ(770) poles. This occurs even though in this global
model, the existence of an f0(1370) pole was not imposed a priori. Further-
more, since the scalar–isoscalar partial wave is not contaminated with the
near f2(1270) pole, the Padé sequence method can be applied and once again
a remarkable agreement is found. All these further checks confirm the very
robust and model-independent determination of the f0(1370) pole.

All in all, the relevant result is that there is indeed a f0(1370) pole in the
ππ → ππ scattering data, at (1245± 40)− i (300+30

−70) MeV. In Fig. 2 (right),
it is represented as a blue/black cross in the

√
s-complex plane, together

with some previous determinations (see [3] or [4] for their references). The
absence of such a pole in the original experimental analyses [6] is due to the
simplified model used for the continuation to the complex plane.

Concerning ππ → KK̄ data, in [4], we could use directly the partial-wave
dispersive output. Since there are two different data sets consistent with
the dispersive representation [7], their difference was part of the systematic
uncertainty. In this case, continued fractions also provide a very stable
determination of the f0(1370) pole, shown in red/gray in Fig. 2, which lies
at (1390+40

−50)− i (220+60
−40) MeV.
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Therefore, although we have shown that the f0(1370) pole appears both
in ππ → ππ and ππ → KK̄, the values thus obtained are in a ∼ 3σ tension
for the mass. Since our methods are model-independent, this can only be
attributed to discrepancies in the data. It is worth mentioning that such a
discrepancy is also hinted at in the Review of Particle Physics [15], where
the f0(1370) Breit–Wigner mass from the “KK̄-mode” never reaches values
as low as those from the “ππ mode”.

3. f0(980) branching ratios from its dispersive pole parameters

The dispersively constrained fits to ππ → ππ data in [8], determined
that the pole of the f0(980) appears at √

sp ≡ M − iΓ/2 = (996 ± 7−
i25+10

−6 ) MeV, and its coupling to two pions, obtained from its residue, was
|gππ| = 2.3 ± 0.2GeV [9]. Thus, applying naively the usual identification
Γtot = −2 Im

√
sp, we would find a total decay width of Γtot = 50+20

−15 MeV.
Applying now the familiar relation Γππ = |gππ|2p/(8πM2), where p =√
M2/4−m2

π is the CM-momentum of the decaying pions, we find that
the partial decay width to two pions is Γππ = 100+20

−17 MeV. The dispersive
partial width would be bigger than the total width!!!.

Of course, that is not correct. One should recall that the amplitude
has two Riemann sheets for each accessible channel. Each pair of sheets is
separated by a singularity cut in the real axis extending from each threshold
to +∞. Note that the KK̄ threshold is just at

√
sKK ∼ 990 MeV.

The correct interpretation of the pole parameters relies on the fact that,
as indicated in [9], the f0(980) pole lies in the “second” sheet, connected with
the physical amplitude by crossing continuously only the ππ cut. Certainly,
the “pole mass” M = 996 MeV is above the KK̄ threshold at ∼ 990 MeV
but the pole is not in the adjacent sheet above that threshold, continuously
connected to the physical amplitude by crossing both the two-pion and KK̄
cuts. As noticed in [16], when looking at a pole in the “wrong” second sheet,
there is a change of sign in the momentum and the imaginary part of the
pole position is not related to the total width in the familiar way.

The usual definition would therefore apply for poles with M2 > sKK

in the third sheet (adjacent sheet above KK̄ threshold), where certainly√
sIIIp = M − iΓtot/2 = M − i(Γππ + ΓKK̄)/2. However, when M2 > sKK

but the pole lies in the second sheet, the previously mentioned change of
sign leads to [16]

√
sIIp = M − iΓII/2 = M − i(Γππ − ΓKK̄)/2.

Thus, in [5] we have applied this interpretation (in the two-channel
approximation) to the dispersive f0(980) pole parameters [9]. Note that
Γππ = 100+20

−17 MeV remains valid and thus we find
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ΓKK ≃ Γππ−ΓII = 50+26
−21 MeV , Γtot ≃ Γππ+ΓKK = 151+44

−37 MeV ,

BRππ ≃ 0.67± 0.07 , BRKK≃ 0.33± 0.07 , BRKK/BRππ≃ 0.49± 0.11 .

As they should, all branching ratios are now less than one. We believe it is
worth investigating if the naive use of total width definitions is a cause of
the huge spread of their values in the literature.
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