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We briefly review the general procedure for building the Born–Oppen-
heimer Effective Field Theory Lagrangian at next-to-leading order and fo-
cus on the hyperfine splitting of heavy-quarkonium hybrids as an exam-
ple. We use an interpolation between the known forms of the short- and
long-distance potentials. We correct an error in one of the long-distance
potentials, which leads to very small modifications of the previous results.
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1. Introduction

In quantum chromodynamics (QCD), delving into heavy-quarkonium
systems has been a persistent endeavor from the outset of the theory. The
significance of these heavy quarks, exceeding the QCD energy scale in mass,
was promptly acknowledged. Within heavy hadrons, these particles move
slowly, making them suitable for description using the standard non-relativ-
istic quantum mechanics once the interaction potential is obtained from
QCD, and this could be done in terms of the expectation value of the Wilson
loop. Further refinement efforts have focused on accounting for corrections
beyond leading order (LO), expressed through operator insertions in the Wil-
son loop. These pursuits culminated in the formulation of non-relativistic
effective field theories (EFT), accommodating hard corrections [1] and pro-
viding a complete result for the potential up to O(1/m2

Q) [2]. Notably,
the diverse facets of the potential have been rigorously scrutinized through
lattice QCD computations [3].

An analogous EFT for heavy quarkonium is detailed in [4]. It ex-
tends to any heavy hadron containing heavy quark–antiquark or two heavy
quarks, alongside gluons and light quarks. These last two collectively termed
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light degrees of freedom (LDF) contribute to forming heavy exotic hadrons.
A non-relativistic bound state is formed by the heavy quarks subject to an
interaction potential depending on the LDF state. Three scales characterize
these bound states: the heavy-quark mass mQ, the relative momentum mQv,
with relative velocity v ≪ 1, and the binding energy mQv

2, whereas the
LDF states are characterized by the typical hadronic scale ΛQCD. The EFT
used is in a way similar to the strong-coupling regime of potential NRQCD
(pNRQCD) as the energy gaps between the scales of the bound states go as
follows: mQ ≫ ΛQCD (NRQCD), ΛQCD ≫ mQv

2, and mQv ∼ 1/r ∼ ΛQCD.
The LO of the adiabatic expansion between the dynamics of the heavy

degrees of freedom, the heavy quarks, and the LDF due to ΛQCD ≫ mQv
2

is the so-called Born–Oppenheimer approximation used in a non-relativistic
EFT framework (BOEFT) in [5, 6]. The BOEFT has also been extended to
include spin-dependent operators up to LO 1/mQ [7, 8] and up to next-to-
leading order (NLO) 1/m2

Q [9].
We shall focus here on the calculation of the hyperfine splitting for hy-

brids as an example of an NLO calculation. A similar calculation for double-
heavy baryons can be found in [10]. In order to compute the hyperfine split-
tings (HFS) for the lower-lying charmonium and bottomonium hybrids at
LO in the BOEFT [8], we used an interpolation between the known form at
short distances of the spin-dependent potentials given in [9] and the long-
distance estimation using the QCD effective string theory [11]. We provide
the results of the spectrum of the lower-lying static hybrid states (Σu and
Πu). We use the charmonium spectrum from [12] to determine the unspeci-
fied parameters in the short-distance form of the potentials and to evaluate
the interpolation dependence. Thereafter, we are able to predict the HFS of
higher multiplets and bottomonium hybrids.

2. The potentials

In Ref. [4], general expressions for the BOEFT at NLO were found and
in [8], the heavy-quark spin-dependent terms are explicitly shown in the case
of lower-lying hybrids, namely for κp = 1+ as the quantum numbers of the
LDF. We find that only two independent potentials describe the hyperfine
splitting at LO, which can be arranged as follows:

Vhf(r) =
1

6
V sa
1+11(r)−

1

3
V sb
1+10(r) , Vhf2(r) = −1

2

(
V sa
1+11(r) + V sb

1+10(r)
)
.

(1)
The potentials V sa

1+11(r) and V sb
1+10(r) at long distances are obtained using

the QCD effective string theory (EST) [13], following the mapping given in
Ref. [14]. We obtain
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V sa
1+11(r)

mQ
= −2cFπ

2gΛ′′′

mQκr3
≡ V sa

ld (r) ,
V sb
1+10(r)

mQ
= ∓cF gΛ

′2π2

mQ
√
πκ

1

r2
≡ V sb

ld (r) .

(2)
Parameters gΛ′ ∼ −59 MeV and gΛ′′′ ∼ ±230 MeV as in [5]. κ ≃ 0.187 GeV2

is the string tension and the short distance matching coefficient cF (mc) ≡
cF (ν = 1GeV,mc) = 1.12155 and cF (mb) ≡ cF (ν = 1GeV,mb) = 0.87897.
We correct in (2) a factor of two in V sb

1+10(r) overlooked in [8]. Due to the
fact that gΛ′ is about four times smaller than gΛ′′′, this correction has a very
small impact on the results. In any case, we present the corrected spectrum
here and comment on the differences with respect to [8].

The short-distance behavior has been studied in Refs. [9, 15]

Vhf(r)/mQ = A+O
(
r2
)
, Vhf2(r)/mQ = Br2 +O

(
r4
)
. (3)

A = cF kA/mQ and B = cF kB/mQ are the unknown real constants in the
interpolation (4) that will be fit to lattice data. kA ∼ Λ2

QCD and kB ∼ Λ4
QCD

as in [15].
Interpolating between the short- and the long-distance behavior with

Vhf(r)

mQ
=

A+
(

r
r0

)2 (
1
6V

sa
ld (r0)− r

3r0
V sb
ld (r0)

)
1 +

(
r
r0

)5 ,

Vhf2(r)

mQ
=

Br2 −
(

r
r0

)5 (
r0
2rV

sa
ld (r0) +

1
2V

sb
ld (r0)

)
1 +

(
r
r0

)7 , (4)

where r0 ∼ 1/ΛQCD is the matching scale. It is estimated from the short- and
long-distance behavior of the static hybrid potentials to be r0 ≃ 3.96 GeV−1.

3. Charmonium hybrids spectrum

We fix the parameters A and B by comparing the results of the spec-
trum obtained with our interpolations (4) now with the correct long-distance
behavior (2) to the lattice data of [12] for the lower-lying hybrid states.

Using mc = 1.47 GeV, scanning values of A and B in the intervals
[−0.3 , 0.3] GeV and [−0.06 , 0.06] GeV3, respectively, and searching for the
ones with the lowest χ2/d.o.f., we obtain similar results as in [8] with no
significant discrepancy. Using the same methodology as in [8], the best fit
corresponds to a negative V sa

ld (r) and a positive V sb
ld (r). The former implies

gΛ′′′ < 0. See Table 1.
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Table 1. Fit parameters dependence on the sign ambiguities.

sign(V sa
ld ) sign(V sb

ld ) +− ++ −+ −−
χ2/d.o.f. 0.8796 0.7199 0.6291 0.7127
A [GeV] 0.0710 0.0925 0.1403 0.1205
B [GeV3] 0.0107 0.0157 −0.00005 −0.0057

We explored the dependence of the result on gΛ′ and gΛ′′′. The prefer-
ence of the fit, is again, for larger values of |gΛ′| and |gΛ′′′| (χ2/d.o.f. = 0.619
versus χ2/d.o.f. = 0.634). Therefore, we take for now on gΛ′ = −0.0796 GeV
and gΛ′′′ = 0.3105 GeV. These values lead to A = 0.1509 GeV and B =
−0.0015 GeV3. The interpolation dependence is estimated by moving r0 ∈
[3 , 5] GeV−1. With the correct long-distance potentials, the χ2/d.o.f. is the
lowest for the default value r0 = 3.96 GeV−1, in contrast to [8], where the
χ2/d.o.f. marginally improved around r0 ∼ 3.5 GeV−1. See Table 2. Re-
garding the errors of A and B due to the input data and the error due to
higher orders in the 1/mQ expansion, we obtain A = 0.124± 0.034 GeV and
B = 0.004± 0.016 GeV3. The spectrum is displayed in Table 3.

Table 2. Fit parameters dependence on r0.

r0 [GeV−1] 3 3.5 3.96 5

χ2/d.o.f. 0.7834 0.6328 0.6195 0.7349
A [GeV] 0.2575 0.1877 0.1509 0.1049
B [GeV3] −0.0016 −0.0045 −0.0015 −0.0001

4. Bottomonium hybrids spectrum

With A and B fixed, the corresponding parameters A′ and B′ to predict
the bottomonium hyperfine splittings are also fixed by a relation on the
masses of charm and bottom. Using mb = 4.88 GeV and computing the
spectrum for the central values of these parameters A′ = 0.029± 0.008 GeV
and B′ = 0.001± 0.004 GeV3, we obtain the results displayed in Table 4. If
we compare this table with the one obtained in [8], we see that the change
in the hyperfine splitting is marginal.
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Table 3. Fit errors in A, B, and in the hybrid charmonium spectrum. The total
errors in the spectrum are obtained by adding in quadrature the error due to
missing higher orders in the 1/mQ expansion (∼ Λ3

QCD/m
2
Q ∼ 30 MeV).

Fit error Total error
A [GeV] 0.124 0.034
B [GeV3] 0.004 0.016

1−− 4.011 0.030
(s/d)1 mass 0−+ 3.907 0.046 0.055

[GeV] 1−+ 3.962 0.025 0.039
2−+ 4.046 0.018 0.035
1++ 4.145 0.030

p1 mass 0+− 4.091 0.056 0.063
[GeV] 1+− 4.054 0.024 0.038

2+− 4.124 0.005 0.030
2++ 4.232 0.030

(p/f)2 mass 1+− 4.237 0.019 0.036
[GeV] 2+− 4.260 0.021 0.036

3+− 4.240 0.013 0.033
p0 mass 0++ 4.486 0.030
[GeV] 1+− 4.449 0.013 0.033

Table 4. The hybrid bottomonium spectrum. The total errors in the spectrum are
obtained by adding in quadrature to the fit errors the error due to missing higher
orders in the 1/mQ expansion (∼ Λ3

QCD/m
2
Q ∼ 3 MeV).

Mass [GeV] A and B error Total error
(s/d)1 1−− 10.690 0.003

0−+ 10.682 0.004 0.005
1−+ 10.686 0.002 0.004
2−+ 10.694 0.002 0.004

p1 1++ 10.761 0.003
0+− 10.756 0.004 0.005
1+− 10.759 0.002 0.004
2+− 10.764 0.002 0.003

(p/f)2 2++ 10.819 0.003
1+− 10.815 0.002 0.003
2+− 10.818 0.000 0.003
3+− 10.821 0.001 0.003

p0 0++ 11.012 0.003
1+− 11.012 0.000 0.003
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5. Conclusions

The benefits of interpolating between short- and long-distance potentials
are outlined in Ref. [8]. In summary, significant improvement in describing
the hyperfine splittings of charmonium hybrids from lattice QCD data is
observed when long-distance contributions computed with QCD EST are
included in LO spin-dependent potentials within BOEFT. Comparing with
the fit using the NLO short-distance potentials [15], the χ2/d.o.f. moves
from 0.999 in that fit to 0.619 in ours. With the unknown parameters fixed,
we computed the hyperfine splittings of higher charmonium hybrid states,
of the bottomonium ones, and the error associated with them.
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