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In this paper, we study a scalar O(N) model with a so-called moat
regime — a regime with negative bosonic wave function renormalization —
using lattice field theory. For negative bare wave function renormalization,
inhomogeneous condensates are solutions of the classical equations of mo-
tions. Using hybrid Monte Carlo simulations, we demonstrate how bosonic
quantum fluctuations disorder the inhomogeneous condensate. Instead, one
finds a so-called Quantum Pion Liquid, where bosonic correlation functions
are spatially oscillating, but also exponentially decaying.
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1. Introduction

Scalar O(N) field theories are a useful tool for the study of phase tran-
sitions. This is especially true in the case of Quantum Chromodynamics
(QCD) at finite density where (1) Lorentz symmetry is broken explicitly
and, therefore, new phases can arise and (2) Monte Carlo simulations are
not available due to the sign problem. In particular, QCD might exhibit the
so-called inhomogeneous phase (IP) — where in addition to chiral symmetry
also translational invariance is spontaneously broken [1]. In order to study
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this phenomenon, one can consider effective models such as Nambu–Jona-
Lasinio (NJL) [2] and scalar O(N) models [3]. Instead (or in addition to)
of critical end-point of O(4) universality class, one might expect to find the
so-called Lifshitz point where three phases meet: disordered, ordered, and
the IP.

In previous studies of a Nambu–Jona-Lasinio (NJL)-type model in 1+1
dimensions, it was found that the IP coincides with the so-called moat
regime [2], where the dispersion relation of quasi-particles exhibits mini-
mum at non-zero momentum. This unusual feature manifests itself as pe-
riodic spatial oscillations of two-point correlation functions. However, the
connection of the moat regime to IP is not straightforward. Quantum fluc-
tuations are expected to weaken ordered phases such as the IP [4, 5], and
in fact they can even eliminate them. In particular, it was argued that in
3 + 1 dimensional scalar O(N) model, one can find the so-called Quantum
Pion Liquid (QπL) analogous to Quantum Spin Liquid (QSL) instead of
IP [3] due to transverse fluctuations. In this case, the QπL is characterized
by small yet always finite mass and is accompanied by the moat regime.
The QπL regime can also be generated through mixing effects of scalar and
vector modes [6, 7].

In this work, we set ourselves to go beyond limitations of previous works
and address the problem of inhomogeneous phase using ab initio lattice
calculations of scalar O(N) model at finite N .

2. Model and algorithm

We consider an O(N) model in 3 + 1 dimensions with spatial higher-
derivative terms as defined in Ref. [3] and take into account only the static
Matsubara mode βω0 = 0, where β = 1/T . In this case, an effective 3-di-
mensional Lagrangian of the static mode reads as

Leff =
Z

2

(
∂jϕ⃗

)2
+

1

2M2

∑
j

∂2
j ϕ⃗

2

+
m2

2
ϕ⃗ 2 +

λN

4

(
ϕ⃗ 2

)2
. (1)

This Lagrangian can be analyzed in the mean-field approximation and in
the large-N limit. In the mean-field approach, it features a Lifshitz point at
Z = 0 and m2 = 0, where three phases meet: disordered, ordered, and the
IP. The ground state of the IP is a chiral spiral

ϕ⃗ = ϕ0

(
cos(k0z), sin(k0z), ϕ⊥ = 0⃗

)T
, (2)

where k0 and ϕ0 are such that they minimize the free energy. In contrast, in
the large-N limit, the Lifshitz point is gone. The IP is replaced by a QπL
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characterized by dynamically generated mass gap and oscillating two-point
function for certain regions in the

(
m2, Z

)
plane. The QπL can exist for

both the bare parameter Z < 0 but also for positive Z. As was argued in
Ref. [3], even at finite values of N , transverse fluctuations should be strong
enough to disorder the condensate and transform the IP into a QπL.

In order to write down a Lagrangian suitable for numerical calculations,
we discretize derivatives

[∆i]x,y =
1

12a2
(−δy,x+2ei + 16δy,x+ei − 30δy,x + 16δy,x−ei − δy,x−2ei) , (3)

where ei is a unit lattice step in the ith direction, and perform standard
Hybrid Monte Carlo (HMC) simulations. We run the calculations for N =
1, 2, 4 and lattice sizes V = 123, 163, 203, and various values of coupling
constants. We generated around 3000–7000 independent configurations for
each point of the phase diagram and used the Jackknife algorithm for error
estimation.

3. Results

As discussed above, one expects different alternative scenarios to an IP
from analytical approximations to the partition function of model (1). Both
the IP as well as the Quantum Pion Liquid regime are characterized by
a particular behavior of bosonic correlations functions. Also, direct access
of ⟨ϕ⃗ (x)⟩ or ⟨|ϕ⃗ |(x)⟩ is not suitable for detecting IPs due to destructive
interference [4]. Thus, a straightforward choice for an observable charac-
terizing these different regimes are the spatial correlation functions between
the bosonic fields ϕ⃗

Cij(x⃗ ) =
〈
cij(x⃗ )

〉
= 1

V

∑
y⃗

〈
ϕi(y⃗ + x⃗ )ϕj(y⃗ )

〉
, (4)

where the sum over lattice sites y is used to get more statistics. In order
to characterize the different regimes, we use fits of Cjj for the respective
regimes:

— Decaying oscillations Cij(x) ∼ δije
−mrx cos(kx) for the QπL, ordi-

nary symmetry-restored phase (OSP) (using k = 0) and the IP (using
mr = 0).

— Algebraically decaying oscillations Cij(x) ∼ δij
cos(kx)

xα for the possible
quasi-long range order (a.k.a. liquid crystal)
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As a criterion to compare the fit qualities, we use the coefficient of deter-
mination. In the following, we will present results for M2 = 1.0, λN = 1.0,
and V = 203. However, we note that our findings are stable among different
volumes V = 123, 163, 203 except for very small, negative Z, where the decay
rates are getting small and larger volumes are needed.

In Fig. 1, we plot C11, see Eq. (4), as well as the preferred fit scenario
for Z = −1.0,m2 = 0.0, and N = 1, 2, 4. As one can see, the Quantum
Pion Liquid fit scenario is preferred independently of N . From [3], one
would have expected to obtain an IP at least for N = 1 since there is no
disordering through Goldstone modes of O(N) symmetry breaking. When
further decreasing Z, the obtained exponential decay rate gets smaller in
consistency with the predictions from Ref. [3] from the large-N limit.
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Fig. 1. Plot of C(x) = C11(x, 0, 0) for Z = −1.0,m2 = 0.0. The preferred fit
scenario is determined using the coefficient of determination. Left: N = 1. Middle:
N = 2. Right: N = 4.

In general, the observation of the different regimes in the
(
m2, Z

)
plane is

similar to the large-N findings [3] for all studied N . For Fig. 2, we depict the
found regimes for N = 1 in comparison to the large-N boundary lines. Our
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Fig. 2. (Color online) Phase diagram from fits for N = 1. The green color (dark
gray shaded area)denotes Homogeneous Broken Phase (HBP), white — Ordinary
Symmetric Phase (OSP), and blue (light gray shaded area) — Quantum Pion
Liquid (QπL) regions according to the large-N results from Ref. [3].
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findings are in agreement with the large-N prediction, although one has to
note that the comparison of different fit scenarios does not yield conclusive
results near any of the phase boundaries. The phase diagram in the

(
m2, Z

)
plane seems to be identical for all studied values of Z, m2, and N up to the
current status of investigation.

3.1. Infinite volume limit with the external field

The above findings can be seen as an indication that the IP might not
exist in the

(
m2, Z

)
phase diagram of Eq. (1). However, one still has to

perform the thermodynamic limit, i.e. V → ∞, in order to identify phase
transitions. On the lattice, we only simulate finite volumes. Thus, we are in
need of an extrapolation method of our findings to the infinite volume. While
a finite volume scaling of the exponential decay rate mr in the Quantum Pion
Liquid regime is plagued by fitting and statistical errors, one can go the
traditional route of studying phase transition using an external symmetry-
breaking parameter. This is introduced for N = 1 by modifying Eq. (1)
using an oscillating external field

Lh0 = Leff − h(x)ϕ1(x) , h(x) =
h0√

2πLσ0

L−1∑
n=0

e−
1
2σ

(pn−k0)
2

cos(pnx2)

(5)
with Gaussian distributed momenta, where pn = 2πn/V 1/3 and σ0 = 0.1.
In order to determine the peak of the Gaussian in momentum space, we
extract k0 from the simulations with h0 = 0. For Z = −1.0, m2 = 0.0, and
V = 203 as used in Fig. 3, we determine k0 = 0.942 ≈ 3× 2π/20. Since the
introduction of the external symmetry-breaking term does not only break
translational but also rotational invariance for h0 ̸= 0, we expect that the
correlation function still depends on the relative differences in the x0 and x1
directions. Translational symmetry breaking should then have an impact on
its dependence on the x2 directions, i.e., one expects

C(x0 − y0, x1 − y1, x2, y2) = C11(x, y) . (6)

In Fig. 3, we plot C(0, 0, x, y) as a color map. For the left plot with
h0 = 0.04, one can directly see the signs of translational symmetry breaking
due to the external field. On the other hand, translational invariance is
restored for h0 = 0.01 in the right plot of Fig. 3 since there clearly is only a
dependence of C on x–y. It is important to determine the transition point
h0,c ∈ (0.01, 0.04) between these behaviors as a function of the volume V
in order to clarify the fate of translation symmetry. If an extrapolation of
the computed values of h0,c reveals that h0,c(V ) = 0.0 for V → ∞, the
phase diagram of model Eq. (1) would, in turn, consist of an IP for N = 1
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Fig. 3. (Color online) Color code of C(0, 0, x, y) for Z = −2.0,m2 = 0.0. Note that
the scaling of the color bar differs in both plots. Left: h0 = 0.04. Right: h0 = 0.01.

in the thermodynamic limit. Alternatively, one could rigorously establish
that inhomogeneous condensates can simply be disordered by the inclusion
of bosonic quantum fluctuations. It would also be interesting to study the
dependence of Cij(x, y) on directions which are transverse to h(x) in order
to study the spontaneous breaking of the rotational symmetry. This work
is planned for a future publication.
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