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We studied the SU(2) version of the PNJL model with a chiral imbal-
ance at finite temperature, exploring different regularization schemes. We
also argued about the missing ingredients for chiral models to obtain results
for the pseudocritical temperatures for chiral and deconfinement transitions
in agreement with Lattice simulations.
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1. Introduction

Recently, there has been an increasing interest in the study of how the
chiral imbalance between right-handed and left-handed quarks can influence
the Quantum Chromodynamics (QCD) phase diagram. One of the motiva-
tions for such studies is the possibility of chiral imbalance to be present in the
heavy-ion collisions in particle accelerators (see [1] and references therein).
Furthermore, magnetic fields are created briefly in these collisions, and the
presence of a chiral imbalance can induce an electric current along the di-
rection of the magnetic field due to the total electric charge from quarks
being nonzero, a phenomenon known in the literature as the Chiral Mag-
netic Effect (CME) [2]. The CME is not limited to QCD, since it can also
be observed in condensed matter systems. The effects of chiral imbalance in
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the QCD phase diagram can be studied in the grand canonical ensemble by
introducing a chiral chemical potential in the Lagrangian density of the the-
ory. In this context, the behavior of fermionic matter with chiral imbalance
can be described using QCD effective models, such as the Nambu–Jona-
Lasinio model (NJL). In this work, we extend the study developed in [3]
for the NJL in the presence of a chiral imbalance and now we also include
the effect of the Polyakov loop (PNJL). Hence, this gives us the possibility
to study also the confinement [4] in the model. Moreover, we perform a
comparison between two regularization schemes for the vacuum integrals:
the Traditional Regularization Scheme (TRS) and the Medium Separation
Scheme (MSS), to compare our results with the Lattice QCD. The MSS
has a list of successful applications to QCD effective models, allowing, for
instance, to obtain results in qualitative agreement with lattice simulations
(see [5] and references therein), and carry out important results from Chiral
Perturbation Theory [6].

2. PNJL model

To analyze the phase structure of the PNJL model at finite density and in
the presence of a chiral imbalance, one makes use of the effective Lagrangian
density [7]

Leff = ψ̄
(
iγµD

µ −mc + µγ0 + µ5γ
0γ5

)
ψ

+G
[(
ψ̄ψ

)2
+
(
ψ̄iγ5τ⃗ψ

)2]− U
(
Φ,Φ†, T

)
, (1)

where mc is the current quark mass, µ, µ5 are the quark and chiral chemical
potentials, ψ and ψ̄ are the quark and anti-quark fields in the Dirac space,
respectively, G is the scalar coupling constant, and τ are the Pauli matrices.
The quantity U(Φ,Φ†, T ) is the effective potential for the pure gauge sector,
defined in terms of the Polyakov loop Φ and its charge conjugate Φ†. One
of the possible fits for U(Φ,Φ†, T ) is [8]

U
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Φ,Φ†, T

)
= T 4

[
−b2(T )

2
ΦΦ† − b3

6

(
Φ3 + Φ†3

)
+
b4
4

(
ΦΦ†

)2
]

(2)

with b2(T ) = a0+a1
(
T0
T

)
+a2

(
T0
T

)2
+a3

(
T0
T

)3, and the parameters a0 = 6.75,
a1 = −1.95, a2 = 2.625, a3 = −7.44, b3 = 0.75, and b4 = 7.5. The parameter
T0 = 270 MeV in Eq. (2) defines the deconfinement scale in pure gauge
theory [9]. More details about the PNJL formulation can be found in [10].

3. Phase structure of the PNJL model with chiral imbalance

The thermodynamics of quark matter with chiral symmetry breaking,
confinement, and chiral imbalance effects may be carried out from the ther-
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modynamic potential

Ω
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M,Φ,Φ†, T, µ, µ5

)
= U

(
Φ,Φ†, T

)
+

(M −mc)
2

4G
+ΩV

−
Nf

β

∑
s=±1

∫
d3k

(2π)3
[
log

(
F+
s F

−
s

)]
, (3)

where β = T−1 and the thermal functions are

F+
s = 1 + 3Φ† e−β(ωs+µ) + 3Φ e−2β(ωs+µ) + e−3β(ωs+µ) ,

F−
s = 1 + 3Φ e−β(ωs−µ) + 3Φ† e−2β(ωs−µ) + e−3β(ωs−µ) , (4)

with ωs =
√
(k + sµ5)2 +M2. In this work, we compare the results ob-

tained using TRS and MSS: Eq. (3) is the thermodynamic potential for
both schemes, except for ΩV , as discussed as follows. In TRS, we regularize
the moment integrals with a 3D cutoff, Λ, which becomes a model parameter
together with G and mc

ΩTRS
V = −NcNf

∑
s=±1

Λ∫
0

dk

2π2
k2ωs . (5)

Conversely, in MSS, it is argued that medium effects do not introduce
new divergences in the theory. Therefore, only the vacuum contribution
must be regularized. Rewriting the divergent integrals in terms of vacuum
quantities through the separation of medium contributions, as detailed in [3],
ΩV becomes

ΩMSS
V = −2NcNf
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ln
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M2
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, (6)

where M0 is the effective quark mass at T = µ = µ5 = 0, and serves as a
scale parameter for MSS. The remaining definitions are

Iquad =

Λ∫
0

k2

2π2
dk√

k2 +M2
0

and Ilog =

Λ∫
0

k2

2π2
dk(

k2 +M2
0

)3/2 . (7)

Minimizing the thermodynamic potential given in Eq. (3), ∂Ω
∂M = ∂Ω

∂Φ =
∂Ω
∂Φ† = 0 , we obtain a system of three coupled equations to be solved self-
consistently for M , Φ, and Φ†.
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In the µ = 0 case, we obtain Φ = Φ†, and the pseudocritical temperatures
for the chiral symmetry restoration and deconfinement transitions (T c

pc and

T d
pc, respectively) are obtained as ∂2M

∂T 2

∣∣∣
T=T c

pc

= ∂2Φ
∂T 2

∣∣∣
T=Td

pc

= 0.

4. Numerical results and discussion

Reference [3] has shown that the reason for the failure of chiral models
to reproduce the qualitative behavior of the pseudocritical temperature with
the chiral chemical potential from lattice simulations [11] is the naive reg-
ularization of medium contributions, as made in Eq. (5). The same failure
is also observed in PNJL with chiral imbalance, as previously shown in [7].
Although MSS cures the problem in the NJL model, this is not the case
for PNJL: in fact, the CEP is not present in the phase diagram, but the
pseudocritical temperatures are obtained as decreasing functions of µ5. To
obtain the qualitative feature of lattice simulations [11], our purpose is to
include a dependence of the Polyakov loop with µ5, through the prescription
U(Φ,Φ†, T ) → U(Φ,Φ†, T, µ5), with

U
(
Φ,Φ†, T, µ5

)
= T 4

[
− b̄2(T, µ5)

2
ΦΦ† − b3

6

(
Φ3 + Φ†3

)
+
b4
4

(
ΦΦ†

)2
]
,

(8)
where b̄2(T, µ5) = b2(T ) + k1

(µ5

T

)
+ k2

(µ5

T

)2
+ k3

(µ5

T

)3. b2(T ) is given
in Section 2, and the additional parameters are k1 = −0.53, k2 = −0.54,
and k3 = −0.55. Note that we have chosen a simple polynomial form with
the same number of coefficients of T0/T , but any other complicated form
may be used with the appropriate coefficients. For the parametrization
of the model, we follow [9], adopting Λ = 651 MeV, G = 5.04 GeV−2,
and mc = 5.5 MeV, that reproduces the empirical values of the pion decay
constant, fπ = 92.3 MeV, pion mass,mπ = 139.3 MeV, and chiral condensate
in the vacuum, |⟨ψ̄uψu⟩|1/3 = 251 MeV. In this way, the MSS scale is M0 =
325 MeV.

In Fig. 1, we show the results for the effective quark mass1, and the
Polyakov loop, in top and bottom panels respectively. The TRS results,
in the left panels, were obtained with the usual form of the Polyakov loop
potential, given in Eq. (2), and regularizing only the integrals coming from
derivatives of ΩTRS

V with Λ. It is possible to see that the point where the
curves change their concavities are being shifted to the left when µ5 in-
creases, i.e., the pseudocritical temperatures are decreasing functions of the
chiral chemical potential, as previously obtained in the literature [7]. Also,
in the region of 0.4 ≤ µ5 ≤ 0.5 GeV, the behavior of the curves becomes

1 M is related to the order parameter for the chiral transition (the chiral condensate
⟨ψ̄ψ⟩) as M = mc − 2G⟨ψ̄ψ⟩.
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Fig. 1. Normalized quark mass M/M0 and Polyakov loop Φ (in the first and second
line, respectively) as functions of the temperature for µ = 0 and for several values
of µ5. The left panels show TRS results, while the right panels are the MSS ones.

similar to a first-order transition, indicating the presence of a CEP in the
phase diagram. The MSS results in the right panels, on the other hand,
were obtained using prescription (8), and present a shift to the right in the
order parameters when µ5 increase, and no first-order behavior. Hence, the
critical temperature is now an increasing function of µ5, and there is no
CEP in the phase diagram. This behavior is shown in Fig 2. In this figure,
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Fig. 2. Pseudocritical temperature as a function of µ5 normalized by its value for
the chiral transition at µ5 = 0, for MSS using prescription (8), for the chiral and
deconfinement transitions compared to the Lattice QCD data.
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large squared dots are the lattice data from [11], while dotted and dashed
curves represent the pseudocritical temperatures for chiral and deconfine-
ment transitions respectively. This result reinforces the importance of the
correct separation of medium contributions from the divergent integrals be-
fore the regularization and indicates that not only the quark sector but the
gauge one is also influenced by medium effects other than the temperature.

5. Conclusions

We studied the Polyakov–Nambu–Jona-Lasinio model in the presence
of a chiral imbalance, comparing different regularization schemes for the
divergent integrals. By introducing a dependence on the chiral chemical
potential in the Polyakov loop together with MSS, we obtained results for
the pseudocritical temperatures in qualitative agreement with Lattice QCD
simulations: both Tpc are increasing functions of µ5, and there is no critical
endpoint in the phase diagram.
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