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We put forward the idea that a medium-dependent coupling can be
introduced in the context of the Nambu–Jona-Lasinio model and the Linear
Sigma Model with quarks to yield a non-monotonic behavior for the speed
of sound of isospin asymmetric matter as recently found by lattice QCD
simulations.
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1. Introduction

Within the subject of strongly interacting systems described by Quantum
Chromodynamics (QCD), the study of isospin-imbalanced matter is relevant
as such conditions are present, for example, in dense astrophysical objects
like neutron stars. Moreover, as opposed to the case of finite baryon density,
lattice QCD (LQCD) simulations do not suffer from the known fermion sign
problem in the presence of a finite isospin chemical potential (µI), making
results obtained within this regime a valuable benchmark for effective mod-
els. In such simulations, it has recently been observed [1, 2] that the speed
of sound of isospin asymmetric matter exhibits a non-monotonic behavior,
characterized by the presence of a peak which exceeds the conformal limit
c2s = 1/3. Although effective theories have been successful at describing
important properties of QCD, reproducing this behavior has proven to be a
difficult task, even at a qualitative level. Motivated by these ideas, we have
proposed in Ref. [3] the introduction of µI -dependent couplings in the con-
text of the Nambu–Jona-Lasinio model (NJL) and the Linear Sigma Model
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with quarks (LSMq), which are obtained by requiring these models to yield
a good description for the isospin density data from LQCD results, while
addressing potential mishaps regarding the thermodynamic consistency [4].

2. Nambu–Jona-Lasinio model

We start by briefly revisiting the formalism of the two-flavor NJL model
at the finite isospin density. The Lagrangian is given by

LNJL = ψ̄
(
i/∂ −m

)
ψ +G

[ (
ψ̄ψ

)2
+
(
ψ̄iγ5τ⃗ψ

)2 ]
= ψ̄

(
i/∂ −m

)
ψ +G

[ (
ψ̄ψ

)2
+
(
ψ̄iγ5τ3ψ

)2
+2

(
ψ̄iγ5τ+ψ

) (
ψ̄iγ5τ−ψ

) ]
, (1)

where ψ = (u, d)T represents the quark fields, m is the current quark mass,
G is the scalar/pseudoscalar coupling, and τ⃗ = (τ1, τ2, τ3) denotes the Pauli
matrices. Anticipating isospin symmetry breaking, we define the combina-
tions τ± = (τ1 ± iτ2)/

√
2. The isospin chemical potential µI is introduced

coupled to the conserved isospin charge at the level of the partition function
ZNJL(T, µI). At finite temperature and zero baryon-number density, we have

ZNJL(T, µI) =

∫ [
dψ̄

]
[dψ] exp

− β∫
0

dτ

∫
d3x

(
LNJL + µ̂ψ̄γ0ψ

) , (2)

with µ̂ = µI
2 τ3, equivalent to the choice of µu = µI/2 and µd = −µI/2 for

the individual quarks.
The breaking of isospin symmetry allows for the condensation of pions.

We conduct our work in the mean-field approximation, and denoting the chi-
ral condensate by σ and the pion condensate by ∆, write the thermodynamic
potential in the zero temperature limit as

ΩNJL =
σ2 +∆2

4G
− 2Nc

∫
Λ

d3k

(2π)3
(
E+

k + E−
k

)
. (3)

Here, Nc = 3 denotes the number of colors, and the energies are given by

E±
k =

√(
Ek ± µI

2

)2
+∆2, with Ek =

√
k2 +M2 and M = m+ σ being the

effective mass that arises due to chiral symmetry breaking. The momen-
tum space integral is divergent, and we adopt the regularization method of
a sharp ultraviolet cutoff Λ. The physical condensates are such that the
thermodynamic potential is minimized, and thus can be found by solving
the gap equations ∂ΩNJL/∂σ = ∂ΩNJL/∂∆ = 0.
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The isospin density nI is defined as −∂ΩNJL/µI , and given by

nI = Nc

∫
Λ

d3k

(2π)3

(
Ek +

µI
2

E+
k

−
Ek − µI

2

E−
k

)
. (4)

Notice that nI still depends on the coupling G, but through the solutions
for the condensates rather than explicitly. This is crucial since this is the
quantity used to predict the µI -dependence of the coupling in order to best
describe the LQCD data from Refs. [1, 2]. In the presence of a medium-
dependent coupling, the physical pressure P must be obtained in a way
that is consistent with the thermodynamic relations. This subject has been
discussed in the literature (see e.g., Ref. [4]), and consistency can be achieved
if the pressure is calculated via integration of the isospin density [5].

With these considerations, it is now possible to define the other ther-
modynamic quantities of interest. The energy density ϵ is given by ϵ =
−P +µInI , and the speed of sound squared is c2s = ∂P/∂ϵ. For the purpose
of comparison, results will be shown in the case of a µI -dependent coupling
G(µI) and also for the constant parameterized value G0. We adopt the pa-
rameter set from Ref. [6], such that m = 4.76 MeV, Λ = 659 MeV, and
G0 = 4.78 GeV−2.
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Fig. 1. Results obtained within the NJL model for the constant coupling case and
for G(µI). LQCD data from Refs. [1, 2].
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In Fig. 1 (a) we show the predicted behavior for the µI -dependent cou-
pling G(µI) obtained from the fitting of the isospin density. The dashed
line corresponds to the parameterized value G0. The coupling decreases
from this value at low µI , reaching a minimum at the intermediate region,
and strengthening afterwards. This behavior is translated to nI , shown in
Fig. 1 (b), as the curves of constant G0 and G(µI) approach and deviate from
each other. In Fig. 1 (c) we show the resulting equation of state in both pre-
scriptions. Here, it becomes clear that only in the case of G(µI), the model
is able to capture the changes in curvature reported by LQCD calculations.
Evidently, this has consequences for the speed of sound, shown in Fig. 1 (d).
In the fixed coupling case, c2s is a monotonically increasing function of µI ,
while for G(µI), the peak is present at the intermediate region, following the
lattice behavior. It exceeds the conformal limit, decreasing towards it from
above for high values of the isospin chemical potential.

3. Linear sigma model with quarks

The LSMq describes the interaction of low-mass mesons with constituent
quarks. Its Lagrangian can be written as

L =
1

2
(∂µσ)

2 +
1

2
(∂µπ⃗)

2 +
a2

2

(
σ2 + π⃗2

)
− λ

4

(
σ2 + π⃗2

)2
+iψ̄γµ∂µψ − igψ̄γ5τ⃗ · π⃗ψ − gψ̄ψσ . (5)

Again, ψ = (u, d)T is the quark doublet, which interacts with the scalar
singlet σ and pseudoscalar triplet π⃗ with coupling strength g. As before,
τ⃗ are the Pauli matrices. The Lagrangian also features the mass squared
parameter a2 and the boson self-coupling strength λ.

The isospin chemical potential is introduced by adding the conserved
isospin charge to the LSMq Hamiltonian. The consequence is a modification
of the covariant/contravariant derivative, such that ∂µ → Dµ = ∂µ + iµIδ

0
µ

and ∂µ → Dµ = ∂µ − iµIδ
µ
0 . Accounting for chiral and isospin symmetry

breaking, we introduce the chiral condensate v and pion condensate ∆. The
tree-level potential is then written as [7]

Vtree = −a
2

2

(
v2 +∆2

)
+
λ

4

(
v2 +∆2

)2 − 1

2
µ2I∆

2 − hv , (6)

where h = m2
πfπ. The one-loop contribution from the fermions is

∑
f=u,d

V 1
f = −2Nc

∫
d3k

(2π)3

[
Eu

∆ + Ed
∆

]
, (7)
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with the energies Eu
∆ =

√
(Ek + µI)2 + g2∆2, Eu

∆ =
√

(Ek − µI)2 + g2∆2,
and Ek =

√
k2 + g2v2. After identifying the divergences with dimensional

regularization and carrying out the renormalization procedure, the LSMq
potential may be written as

Veff = Vtree +
∑
f=u,d

V 1
f +

δa

2

(
v2 +∆2

)
− δλ

4

(
v2 +∆2

)2
+
δ

2
∆2µ2I . (8)

Denoting by (v0, ∆0) the tree-level solutions of the gap equations, the coun-
terterms δa, δλ, and δ can be fixed by the conditions (∂Veff/∂v)|v0,∆0

=

(∂Veff/∂∆)|v0,∆0
= (∂Veff/∂µI)|µI=mπ

= 0. The other thermodynamic
quantities of interest are defined similarly as in the previous section, and
the model parameters are chosen such that λ = 10.84, a = 274.29 MeV, and
g = 2.9. Again, results are presented in the regimes of a fixed coupling g and
also with the medium dependent g(µI), obtained from the LQCD data [1, 2]
for the isospin density.

In Fig. 2 (a) we show the predicted behavior of the coupling g(µI). It
is an increasing function of µI throughout the considered region, with the
constant parameterized value indicated by the dashed line representing its
average to some extent. Nonetheless, the overall picture is similar to the NJL
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Fig. 2. Results obtained within the LSMq for the constant coupling case and for
g(µI). LQCD data from Refs. [1, 2].
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model. Figure 2 (b) shows the isospin density fitting, and how only the µI -
dependent coupling case can capture the changes in curvature. Additionally,
the value of the derivative at µI = mπ does not coincide between the two
prescriptions, which reflects on g(µI) starting below the constant value. In
Fig. 2 (c) it can be seen that the presence of g(µI) hardens the equation
of state of the LSMq, as its curve is always above the constant g case.
Finally, Fig. 2 (d) further establishes that the non-monotonic behavior is
only reproduced in the case of the µI -dependent coupling g(µI).

4. Summary

In this contribution, we have shown how the non-monotonic behavior for
the speed of sound can be reproduced within effective models by considering
medium contributions to the coupling constants. This is done by requiring
that the models provide a good description of the LQCD data for the isospin
density. We hope this study portrays an interesting avenue to be further
investigated in the context of effective theories of strongly interacting matter.
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