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We test a method for computing static hybrid quark–antiquark poten-
tials in lattice QCD, which is not based on Wilson loops, but where the
trial states are formed by eigenvector components of the covariant lattice
Laplace operator and their covariant derivatives. The main advantage of
the new method is that we can compute off-axis distances without much
extra work and by introducing a basis of Gaussian profiles in distillation
space and solving a GEVP, we can also access excited states. We present a
static hybrid spectrum with ground and excited Σ and Π states, and per-
form a basic Born–Oppenheimer approximation on a QCD-like ensemble
with two dynamical quarks of half the charm quark mass.
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1. Introduction

A system comprising an infinitely heavy quark and antiquark pair im-
mersed in the QCD vacuum with light quarks has very rich physics, describ-
ing both the dynamics of confinement and the decay of heavy-quarkonium
states into heavy-flavoured meson pairs [1]. The energy of this system varies
as the separation between the static colour sources is varied and for short
distances, this energy is computed in lattice QCD using operators describing
a flux tube connecting the sources. The simplest such operator is a straight
Wilson line [2] joining the two sources and this creates the ground-state gluon
flux tube [3]. In [4, 5], we have introduced new operators, namely “Laplace
trial states”, which replace the spatial Wilson line with a weighted sum of
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eigenvector pairs of the 3D lattice Laplace operator. Here, we want to ap-
ply this technique to compute static-hybrid potentials. The latter represent
a promising frontier in the quest to decipher the strong force’s intricacies.
These potentials offer a unique perspective on meson behavior, bridging the
gap between traditional quark models and lattice QCD simulations [6]. In
particular, XYZ states have posed significant challenges to our understand-
ing of hadron spectroscopy. These states do not fit neatly into the quark
model, and their properties pose questions about their internal structure and
how they relate to QCD [7]. Static-hybrid mesons could provide a theoretical
framework to help explain or categorize some XYZ states. One hypothesis
is that some XYZ states could be interpreted as hybrid mesons where glu-
onic excitations play a significant role. The “gluexcitement” of the strong
force within these states may contribute to their exotic properties. The ex-
cited flux tube is adding non-zero angular momentum about the axis of the
quark–antiquark pair. The quantum numbers of this system are the angular
momentum around the inter-source axis, the discrete transformations com-
bining charge conjugation with parity reflection about the central point of
the system, and a spatial reflection with respect to a plane including the
axis of separation. We show how to construct new static hybrid operators
with trial states formed by eigenvector components of the covariant lattice
Laplace operator, where the gluonic excitations are realized via covariant
derivatives of individual eigenvectors.

2. Static hybrid potentials

The static hybrid potentials are characterized by the following quantum
numbers Λϵ

η [8]:

— Λ = 0, 1, 2, 3, . . . ≡ Σ,Π,∆,Φ, . . . , the absolute value of the total
angular momentum with respect to the axis of separation of the static
quark–antiquark pair,

— η = +,− ≡ g, u, the eigenvalue corresponding to the operator P ◦ C,
i.e. the combination of parity about the central point and charge con-
jugation,

— ϵ = +,−, the eigenvalue corresponding to the operator Px, which
denotes the spatial reflection with respect to a plane including the
axis of separation.

Note that for angular momentum Λ > 0, the spectrum is degenerate with
respect to ϵ. These quantum numbers are derived from the continuous group
D∞h, which leaves a cylinder along a chosen axis invariant. The irreducible
representations (irreps) of this group are A±

1 (also denoted as Σ+
±), A

±
2 (Σ−

±),
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E±
1 (Π±), E±

2 (∆±), E±
3 (Φ±), etc. On the lattice, we have only D4h with

10 irreps: A±
1 , A±

2 , B±
1 , B±

2 (all d = 1), and E± (d = 2). The subduction
relations are given by A±

1,2 → A±
1,2, E

±
1 → E±, E±

2 → B±
1 ⊕B±

2 , etc.
In order to build hybrid Laplace trial states, we introduce gluonic exci-

tations via covariant derivatives of the Laplacian eigenvectors

∇
k⃗
v(x⃗ ) =

1

2

[
Uk(x⃗ )v

(
x⃗+ k̂

)
− U †

k

(
x⃗− k̂

)
v
(
x⃗− k̂

)]
.

Derivative-based operators transform according to the 10 irreps of the cubic
group Oh, e.g. ∇i(T

−
1 ), Bi = ϵijk∇j∇k(T

+
1 ), Di = |ϵijk|∇j∇k(T

+
2 ), Ei =

Qijk∇j∇k(E
+), ∇2(A+

1 ) [9]. We restrict ourselves to one derivative operator
here. Since D4h is a subgroup of Oh, we have the subduction relations
A±

1 → A±
1 , A±

2 → B±
1 , E± → A±

1 ⊕ B±
1 , T±

1 → A±
2 ⊕ E±, and T±

2 →
B±

2 ⊕ E±. The fourth relation shows that the three components of ∇i get
separated into one that transforms like A2 (along the separation axis) and
two that transform like E (the two orthogonal to the separation axis). The
gluonic excitations allow us to also access exotic quantum numbers, i.e.
JPC = 0−−, 0+−, 1−+, 2+−, 3−+, 4+−, 5−+, . . . , which are not allowed in the
pure quark model, where P = (−1)L+1 and C = (−1)L+S , with orbital
angular momentum L ∈ {0, 1, 2, . . .} and spin S ∈ {0, 1}. In this paper, we
consider the following trial states with static quarks at x⃗ and y⃗, respectively,
i.e., a quark separation R = |r⃗ | = |y⃗ − x⃗ |:

Σ+
g (R) = vi(y⃗, t0)v

†
i (x⃗, t0) , or (1)

Σ+
g (R) = ∇

k⃗||r⃗vi(y⃗, t0)v
†
i (x⃗, t0)− vi(y⃗, t0)

[
∇

k⃗||r⃗vi

]†
(x⃗, t0) , (2)

Σ−
u (R) = ∇

k⃗||r⃗vi(y⃗, t0)v
†
i (x⃗, t0) + vi(y⃗, t0)

[
∇

k⃗||r⃗vi

]†
(x⃗, t0) , (3)

Πg(R) = ∇
k⃗⊥r⃗

vi(y⃗, t0)v
†
i (x⃗, t0)− vi(y⃗, t0)

[
∇

k⃗⊥r⃗
vi
]†
(x⃗, t0) , (4)

Πu(R) = ∇
k⃗⊥r⃗

vi(y⃗, t0)v
†
i (x⃗, t0) + vi(y⃗, t0)

[
∇

k⃗⊥r⃗
vi
]†
(x⃗, t0) . (5)

3. Results

We performed all our measurements on 48 × 243 lattices with periodic
boundary conditions except for anti-periodic boundary conditions for the
fermions in the temporal direction. They were produced with the open-
QCD package using the plaquette gauge action and two dynamical non-
perturbatively O(a) improved Wilson quarks with a mass equal to half of
the physical charm quark mass (≈ 600 MeV). The bare gauge coupling is
g20 = 6/5.3 and the hopping parameter is κ = 0.13270. The lattice spacing
is a = 0.0658(10) fm. All measurements were performed by our C+MPI-
based library that facilitates massively parallel QCD calculations. A total
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of Nv = 200 eigenvectors of the 3D covariant Laplacian were calculated on
each time-slice of the lattices, as described in [10]. A total of 20 3D APE
smearing steps with αAPE = 0.5 were applied on each gauge field before
the eigenvector calculation so as to smooth the link variables that enter
the Laplacian operator. When forming the correlations of the Laplace trial
states, we apply one HYP2 smearing step with parameters α1 = 1, α2 = 1,
and α3 = 0.5 to the temporal links [11], which corresponds to a particular
choice of the static action.

We show the static hybrid ground-state potentials of Σ±
g/u and Πg/u, and

some excited states in figure 1. We plot the potentials relative to twice the
static-light S-wave mps and also mark the P−-wave mass ms [12]. We see
that expected string-breaking distances of Σ+

g and Πu are just above half
the spatial lattice extent. For on-axis separations, the potential of Πg/u in
the continuum representation can be obtained from the E∓

1 representation
of D4h. For off-axis separations, we technically do not have D4h, but we can
consider off-axis separations in a 2D plane only rather than the 3D volume, to
be left with one orthogonal direction for the covariant derivatives. For Σ−

u

with derivatives along the separation axis, we compute on-axis distances
only.

Σg
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u

Σ
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Πu
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Fig. 1. Static hybrid potentials for Σ∓
u/g and Πu/g relative to twice the static-light

S-wave mass mps and the P−-wave mass ms, string breaking distances of Σ+
g and

Πu are just above half the lattice extent. 3D resp. 2D off-axis distances for Σ+
g

and Πg/u, on-axis only for Σ−
u .
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4. Born–Oppenheimer

For a simple proof of principle, the static (hybrid) potentials can be
used in the Born–Oppenheimer approximation [13] to compute the spectrum
of quarkonium by solving the non-relativistic Schrödinger equation in the
adiabatic potential generated by the relativistic light quarks and intrinsic
gluons

EΛϵ
η ;L,nΨΛϵ

η ;L,n(r) =(
− 1

2µ

d2

dr2
+
L(L+ 1)− 2Λ2 + JΛϵ

η
(JΛϵ

η
+ 1)

2µr2
+ VΛϵ

η
(r)

)
ΨΛϵ

η ;L,n(r) , (6)

where r is the separation of the heavy Q̄Q pair and µ = mQmQ̄/(mQ+mQ̄)
its reduced quark mass. L ∈ {Λ,Λ + 1, . . .} is the quantum number corre-
sponding to the operator L, the sum of all angular momenta excluding the
heavy quark spins S, i.e. J = L+S, where J is the total angular momentum
of the meson, i.e., JΛϵ

η
= 0 for Λϵ

η = Σ+
g , JΛϵ

η
= 1 for Λϵ

η ∈ {Σ+
g
′, Πg, Πu}

and JΛϵ
η
= 2 for Λϵ

η = Σ+
u . In this adiabatic approximation, the gluon

field is assumed to be in a stationary state in the presence of the heavy
Q̄Q pair, with errors proportional to ΛQCD/mQ, which is suited for heavy
quarks. Further, only a single component of this multi-channel Schrödinger
equation is considered and couplings to other channels are ignored, which
is valid for small separations r, where the used hybrid static potential has
avoided crossings with the other hybrid static potentials. We solve Eq. (6)
numerically using mc = 1628 MeV or mb = 4977 MeV and for the potentials
VΛϵ

η
(r) the parametrizations suggested in [14]

VΣ+
g
(r) = V0 − α/r + σr and VΠu(r) = A1/r +A2 +A3r

2 .

The energies EΛϵ
η ;L,n contain the self-energies of the static quarks, which

can be eliminated via

mΛϵ
η ;L,n = EΛϵ

η ;L,n − EΣ+
g ;L=0,n=1 + m̄

with m̄ the spin averaged mass m̄c = (mηc(1S),exp + 3mJ/Ψ(1S),exp)/4 =
3069(1) MeV and m̄b = (mηb(1S),exp + 3mΥ (1S),exp)/4 = 9445(1) MeV [15].
The energy EΛϵ

η=Σ+
g ;n=1,L=0 corresponds for Q̄Q = c̄c to the ηc(1S) and

J/Ψ(1S) meson, which are degenerate in the static limit, and similarly for
Q̄Q = b̄b to the ηb(1S) and Υ (1S) meson. In Table 1, we list bound-state
energies of the static potential Σ+

g and the lowest Πu state from the Born–
Oppenheimer analysis together with their mean squared distance

√
⟨r2⟩ of

the wave function (⟨r2⟩ =
∫∞
0 Ψ(r)r2dr). The former are compared with
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experimental values of the mJ/Ψ (nS) and mΥ (nS), the computed values
are consistently larger in our non-physical setup; the latter, therefore, only
provide a very vague prediction, also because 1/mQ corrections, e.g. from
the quark spins, are neglected.

Table 1. First two bound-state energies in MeV of the static potential Σ+
g and

hybrid Πu state from the Born–Oppenheimer analysis using mQ = mc = 1628 MeV
(left) and mQ = mb = 4977 MeV (right). E1

Σ+
g

is given by m̄c/b, other Σ states are
compared with experimental values of mJ/Ψ (nS) and mΥ (nS), respectively.

mQ = mc n = 1 n = 2 mQ = mb n = 1 n = 2

L = 0, Σ+
g m̄c 4347(19) L = 0, Σ+

g m̄b 10402(17)

mJ/Ψ (nS) 3096.900(6) 3674(1) Υ (nS) 9460.4(1) 10023.4(5)

L = 1, Πu 4504(12) L = 1, Πu 10992(12) 11531(13)

5. Conclusions and outlook

We have computed static hybrid potentials VΛϵ
η
(r) for Λϵ

η = Σg/u and
Πg/u states in SU(3) lattice gauge theory using alternative operators for
a static quark–antiquark pairs based on Laplacian eigenmodes, replacing
traditional Wilson loops. Instead of “gluonic handles” (excitations) of the
spatial Wilson lines, we use symmetric, covariant derivatives of the Lapla-
cian eigenvectors to form improved Laplace trial states by applying optimal
profiles to give different weights to individual eigenvectors, derived from a
generalized eigenvector problem. A high resolution of the static hybrid po-
tentials can be achieved as off-axis distances can easily be computed in the
new approach. We present a static hybrid spectrum including excited states,
where we also mark the string breaking masses from static-light S- and
P -waves, the string breaking distances of Σg and Πu are just above half
of our lattice extent. The implementation of (hybrid) static-light correla-
tors using “perambulators” v(t1)D−1v(t2) from the distillation framework,
i.e., quark field smearing via projection ψ → vv†ψ [10], is the subject of a
forthcoming paper. This allows us to put together the building blocks for
string breaking in QCD, computing the mixing matrix of static and light
quark propagators [16]. The new methods can also be applied to tetra- and
multi-quark potentials.
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