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The odderon is the C-odd amplitude that does not fall (or decrease
very slowly) with energy. The expected amplitude is small and mainly
real. Therefore, extracting it from the data on top of a much larger C-
even contribution is challenging. The only chance is to consider the very
low-|t| region of the Coulomb nuclear interference or the diffractive dip re-
gion. Here, we perform the analysis of elastic scattering pp and p̄p data at
low momentum transfer |t| < 0.1 GeV2 within large collider energy inter-
val

√
s = 50 GeV–13 TeV in order to evaluate quantitatively the possible

odderon contribution. We use the two-channel eikonal model, which nat-
urally accounts for the screening of the odderon amplitude by the C-even
(Pomeron) exchanges.
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1. Introduction

The odderon is the C-odd amplitude which does not fall (or die very
slowly) with energy. Theoretically, there is no reason not to have such an
amplitude. Moreover, it appears in perturbative QCD where in the lowest
αs order, it is given by the three-gluon exchange when all three gluons are
symmetric in colour (i.e. convoluted by the colour SU(3) tensor dabc).

Since the odderon amplitude is expected to be rather small, the best
chance to observe it on top of a much larger C-even contribution is either
in the diffractive dip region where the imaginary part of the C-even ampli-
tude vanishes or by measuring the real part of pp (p̄p) elastic amplitude.
Recall that due to dispersion relations, the real part of high-energy C-even
amplitude is relatively small (ReAeven ≪ ImAeven).
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The real part of proton–proton amplitude can be measured via the
Coulomb-nuclear interference (CNI) at very low momentum transferred |t|.
In 2018, TOTEM claimed the odderon discovery based on the measurements
of the total cross section and the real part of the forward elastic pp amplitude
at 13 TeV [1]. The observed value of the ratio of real-to-imaginary parts of
the forward scattering amplitude, namely ρ = (0.09–0.10)±0.01, turned out
to be noticeably smaller than the predicted value (ρ = 0.13–0.14 [2]) coming
from dispersion relations for the case of pure C-even interactions.

This prompted a renewal of interest in the potential existence of the
high-energy C-odd (odderon) contribution.

The new ATLAS/ALFA data recently confirmed this value of ρ [3]. How-
ever, the value of the total cross section at 13 TeV reported by the AT-
LAS/ALFA team, σtot = 104.68 ± 1.09 mb [3], is approximately 5% lower
than the average of values determined by TOTEM (σtot = 111.6 ± 3.4 mb,
σtot = 109.5± 3.4 mb, and σtot = 110.3± 3.5 mb) indicating that a smaller
value of the real part of the C-even amplitude should be expected from the
dispersion relations. The relatively small value of ρ can be explained by the
admixture of the C-odd amplitude, which survives at high LHC energies.

2. Formalism

In the recent paper [4], the available low |t| < 0.1 GeV2 data at 50 GeV <√
s < 13 TeV were analyzed including both the TOTEM and ATLAS/ALFA

results. Since at all LHC energies the total cross section measured by ATLAS
is systematically smaller than that claimed by TOTEM, in the fit we added
(as free parameters) the corresponding normalization factors, Ni. That is,
the χ2 was calculated as

χ2 =
∑
ij

(
Nids

th
ij − dsexpij

)2

(
δremij

)2 +
∑
i

(1−Ni)
2

δ2i
, (1)

where i denotes the particular set of data, while j denotes the point tj in
this set of data; dsth is the theoretically calculated dσ/dt cross section (8),
while dsexp is the value measured at the same ij point experimentally; δi is
the normalization uncertainty of the given (i) set of data and δremij is the
remaining error at the point ij calculated as (δremij )2 = δ2tot,ij − (δi dσ

exp
ij )2.

As a rule, the value of δrem is dominantly the statistical error1.

1 A similar approach was used in [5].



Odderon in the Light of Collider Low-t Data 1-A10.3

The two-channel eikonal model

AN (s, t) = is

∞∫
0

bdb J0(bq)

[
1− 1

4
ei(1+γ)2Ω(s,b)/2

− 1

2
ei(1−γ2)Ω(s,b)/2 − 1

4
ei(1−γ)2Ω(s,b)/2

]
(2)

was used, where the opacity Ω(s, b) = ΩPomeron(s, b) + ΩOdd(s, b) is given
by the sum of the C-even/Pomeron and the odderon terms.

The opacity function Ωi(s, b) is related to the bare nuclear amplitude
FN
i (s, t) through the Fourier–Bessel transform

Ωi(s, b) =
2

s

∞∫
0

q dq J0(bq)F
N
i (s, t) , (3)

where i = P,O represent the Pomeron and odderon exchanges, respectively.
The single Pomeron contribution is given by

FN
P (s, t) = β2

P(t) ηP(t)

(
s

s0

)αP(t)

, (4)

where ηP(t) = −e−iπ
2
αP(t) is the even signature factor,

βP(t) = βP(0) e
(At+Bt2+Ct3)/2 (5)

is the elastic proton–Pomeron vertex, and

αP(t) = 1 + ϵ+ α′
Pt+ h(ππ) (6)

is the Pomeron trajectory with the pion loop insertion h(ππ) [6].
The odderon contribution is given by

FN
O (s, t) = β2

O(t) ηO(t)

(
s

s0

)αO(t)

, (7)

where ηO(t) = −ie−iπ
2
αO(t) is the odd signature factor, βO(t)) = βO(0)e

Dt/2

is the elastic proton–odderon vertex, and we fixed the odderon trajectory to
its largest QCD value αO(t) = 1 (see e.g. [7–9]).

We accounted for the Coulomb nuclear interference AC+N = AN +
eiαϕ(t)AC and the Bethe phase ϕ(t). Accordingly, the elastic differential
cross section reads

dσ

dt
(s, t) =

π

s2

∣∣∣AN (s, t) + eiαϕAC(s, t)
∣∣∣2 . (8)



1-A10.4 E.G.S. Luna, M.G. Ryskin, V.A. Khoze

3. Results

We obtained a quite satisfactory fit with χ2 = 560 for 504 degrees of
freedom, ν; χ2/ν = 1.11. Neglecting the odderon, we get a much larger
χ2 = 726. The quality of the description of the Coulomb-nuclear interference
region at 13 TeV is shown in Fig. 1, right, while the energy behaviour of σtot
and σel — in Fig. 1, left.

Fig. 1. The energy behaviour of σtot and σel (left) and the description of t-
dependence of elastic pp differential cross section at 13 TeV in the Coulomb-nuclear
interference region (right). The data are from [1, 3]. Theoretical curves are multi-
plied by the corresponding normalization factors.

The parameters corresponding to the Pomeron and the odderon ex-
changes are given in Table 1. The normalization factors for ATLAS data
turn out to be close to 1 (N7 = 1.015, N8 = 1.003, N13 = 1.009, where
the index denotes the value of

√
s in TeV), while for the TOTEM, we get

N7 = 1.077, N8 = 1.121, and N13 = 1.15.

Table 1. Values of the parameters obtained in the global fits to the Ensemble,
including the TOTEM and ATLAS data.

βP(0) ϵ α′
P [GeV−2] βO(0)

2.259± 0.016 0.1180± 0.0020 0.128± 0.022 0.90± 0.18

A [GeV−2] B [GeV−4] C [GeV−6] D = A/2

4.78± 0.21 6.7± 1.1 17.7± 4.0
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The slope of the odderon coupling βO ∝ exp(Dt/2) in the fit was fixed
to be D = A/2. However, the results practically do not depend on this
value. In particular, varying D from 0.1A to 0.9A, we get the same total
cross section σtot = 105.1 mb at 13 TeV and the Re/Im ratio ρ = 0.112–
0.110. The only difference is the odderon–proton coupling which for a small
D becomes larger (βO = 1.09 ± 0.24 for D = 0.1A) in order to provide the
same odderon contribution from a smaller impact parameters, b, where the
screening caused by the Pomeron is stronger.

4. Conclusion

The main lessons about the odderon learned from this study are:

— The description using the odderon improves the fit (with the odderon,
χ2 becomes much smaller).

— The sign of the odderon amplitude needed to describe the very low |t|
data is opposite to that predicted by the perturbative QCD three-gluon
exchange contribution [10–12]2.

— The odderon–proton coupling, βO(0), is smaller than that for the
Pomeron. Moreover, after accounting via the eikonal the screening
of seed odderon by the Pomerons, the final C-odd contribution to ρ
at 13 TeV becomes quite small, δρ = (ρp̄p − ρpp)/2 ≤ 0.004 — i.e. 10
times smaller than that (δρ = 0.04) originally claimed by TOTEM.
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