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The potential effects of absorptive corrections in high-energy forward
elastic proton–proton scattering were investigated. The analysis revealed
that a hypothetical systematic bias in the experimentally measured values
of the real-to-imaginary ratio, ρ, improves the Regge fit for the proton–
proton ρ and σtot. However, such a bias worsens the discrepancy between
σmeas
tot and ρmeas reported in the TOTEM measurements at

√
s = 13 TeV.

Additionally, assuming a logarithmic dependence of the hadronic slope on t,
B(t) = β0(1+β′ ln t), may influence the interpretation of the TOTEM result
for ρ.

DOI:10.5506/APhysPolBSupp.18.1-A12

1. Introduction

In the RHIC Spin Program, the Atomic Hydrogen Gas Jet Target (HJET)
[1] is employed to measure the absolute polarization of vertically polarized
proton beams with low systematic uncertainty, approximately σsyst

P /P ≈
0.5% [2]. Additionally, single-spin AN(t) and double-spin ANN(t) analyz-
ing powers have been precisely measured at |t| < 0.02 GeV2 for two beam
energies, 100 and 255 GeV, enabling a reliable determination of the corre-
sponding hadronic spin-flip amplitudes [3].

HJET also functions effectively with nuclear beams, allowing p↑A analyz-
ing powers to be routinely studied during the RHIC heavy-ion runs without
disrupting operations. For 100 GeV/nucleon beams, ApA

N (t) was measured
for various ions (Fig. 1) [4], providing an opportunity for detailed tests of
spin effects within the Glauber model. The energy dependence of ApA

N (t)
was also investigated for gold (3.8–100 GeV) and deuteron (10–100 GeV)
beams.
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Fig. 1. Dependence of the proton–nucleus elastic analyzing power ApA
N (t) on the

beam ion (left) and beam energy (right). The measured analyzing powers are
normalized to the proton–proton value calculated for Ebeam = 100 GeV, assuming
no hadronic single spin-flip (r5 = 0).

For elastic p↑A scattering, the analyzing power can be parameterized
similarly to that of elastic p↑p scattering [5]

AN(t) =

√
−t

mp
× (κp − 2Im r5) tc/t− 2Re r5

(tc/t)2 − 2(ρ+ δC) tc/t+ 1 + ρ2
, (1)

where κp = 1.793 is the anomalous magnetic moment of the proton, ρ is the
real-to-imaginary ratio, δC(t) is the Coulomb phase arising from the final-
state soft photon exchange (Fig. 2), tc = −8πα/σtot, and |r5| ∼ 0.02 [3] is the
hadronic spin-flip amplitude parameter. For simplicity, minor corrections to
the parameterization of AN(t) are omitted in Eq. (1).
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Fig. 2. Three types of elastic proton–proton scattering: (C) electromagnetic, in-
cluding multiphoton exchange; (N) bare hadronic; and (NC) combined hadronic
and electromagnetic contributions.

Since the parameters of proton–nucleus elastic scattering, σpA
tot, ρpA, and

δpAC (t), can be calculated within the Glauber approach [6], and rpA5 can be
related to its proton–proton counterpart [7, 8], ApA

N (t) was expected to be
theoretically well predicted. However, it has been suggested [6, 9] that ab-
sorptive corrections, i.e., effective modifications to the electromagnetic form
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factor due to hadronic interactions in the final state, may significantly impact
the measured ApA

N . This effect, which is also important for pp scattering,
was not accounted for in Eq. (1).

2. Absorptive corrections in pp scattering

In the eikonal approach, the forward non-flip elastic proton–proton am-
plitude F nf(b) in impact parameter space is expressed as

F nf(b) = i
[
1− eiχC(b)

]
+ γN(b) e

iχC(b) , (2)

which accounts for contributions from the soft-photon exchange. The eikonal
phase χC is derived, using a Fourier transform, from the Coulomb amplitude
fC(q

2
T) = −2αeBEq

2
T/2/q2T in the Born approximation

χC(b) = −2α

∞∫
0

qT dqT
q2T + λ2

e−BEq
2
T/2J0 (bqT) , (3)

where qT is the transverse momentum in the scattering, q2T ≈ −t, and a ficti-
tious photon mass λ is introduced to regularize the integral. Similarly, γN(b)
is derived from the hadronic amplitude fN = [(i+ ρ)σtot/4π] e

Bq2T/2.
The Coulomb-corrected amplitudes are expressed as

fγ
C(t) = fC(t) e

iΦλ
C(t) , fγ

N(t) = fN(t) e
iΦλ

NC(t) , (4)

where the phases Φλ
C(t) and Φλ

NC(t) exhibit a non-vanishing dependence ∼
ln (λ2/t) as λ → 0. However, this dependence cancels in the phase difference
δC(t) = Φλ

C(t)− Φλ
NC(t).

As discussed in Ref. [10], absorptive corrections can be incorporated by
applying an absorptive factor to the electromagnetic amplitude in Eq. (2)

i
[
1− eiχC(b)

]
→ i

[
1− eiχC(b)

]
× [1− Im γN(b)] . (5)

This approach was followed in Refs. [6, 9], where the results were presented
in terms of Fourier integrals.

In Ref. [11], it was observed that by considering Eqs. (2), (4), and (5), the
absorptive correction to the electromagnetic form factor can be expressed as

BE → Beff
E ≈ BE +

2Φλ
NC

tc
. (6)
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However, this result explicitly depends on the photon mass λ used in the
calculations, raising concerns about the validity of the method for incorpo-
rating absorptive corrections.

To address this issue, Ref. [11] proposed replacing Φλ
NC in Eq. (6) with

an undefined constant, αC. This substitution modifies the parameterization
of the differential cross-section’s dependence on t as follows:

dσ

dt
=

σ2
tot

16π

[(
tc
t

)2

− 2(ρ− αC + δC)
tc
t
+ 1 + ρ2

]
eBt . (7)

This modification introduces a systematic bias, ρmeas = ρ + αC, in the
experimental determination of the real-to-imaginary ratio ρ. Consequently,
this bias can be investigated through a Regge fit of the experimental σtot(s)
and ρ(s) values as functions of the squared center-of-mass energy, s.

For the fit (see Fig. 3), the σtot(s) and ρ(s) pp accelerator dataset with
plab > 5 GeV was sourced from the PDG [12]. However, due to a known
discrepancy [13] between the σtot(s) and ρ(s) measurements at

√
s = 13 TeV,

the TOTEM ρ(s) values were excluded. By including αC as a free parameter
in the fit, Ref. [11] obtained

αC = −0.036± 0.016 . (8)

This result confirmed the hypothesis of a systematic bias in the measured
ρ values, with a statistical significance of 2.6 standard deviations. However,
the bias determined in Eq. (8) worsens the discrepancy between the TOTEM
measurements of ρ and σtot.
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Fig. 3. Regge fit of the world measurements of ρ and σtot [12], with (αC = −0.036,
solid red line) and without (αC = 0, dashed blue line) systematic bias in the
experimental values of ρ. The TOTEM measurements [13] of ρ (empty circles)
were excluded from the fit.
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If the absorptive correction is constrained by fixing the Coulomb phase
Φλ
C = 0, then Φλ

NC = −δC(t) becomes independent of the photon mass λ. In
this scenario, αC = −δC(tc) − α ln tc/t ≈ −0.021, consistent with Eq. (8).
To confirm that the small logarithmic term −α ln tc/t in the absorptive cor-
rection does not significantly affect ρ, the TOTEM dσ/dt data (from Table 1
of [13]) was fitted both with and without this term.

When fitting the TOTEM dσ/dt measurements, it was observed that
introducing a logarithmic dependence of the hadronic slope on t

B(t) = β0

(
1 + β′ ln

tc
t

)
, (9)

provides better agreement with the data at larger t values (outside the
Coulomb–nuclear interference region) and effectively eliminates the discrep-
ancy between the measured values of σtot and ρ. This improvement is
summarized in Table 1. In the fit without absorptive corrections and with
|t|max = 0.15 GeV2, setting β′ = 0.021 significantly reduced χ2/n.d.f. from
236.9/115 (for β′ = 0) to an excellent 105.9/114 and notably increased the
value of ρ by 0.03.

Table 1. Dependence of the dσ/dt fit results [13] on the parameterization of the
hadronic slope B(t). |t|max denotes the maximum value of |t| considered in the fit.
The upper three rows are taken from the TOTEM Collaboration publication [13],
while the last two rows were evaluated in this work.

|t|max = 0.07 GeV2 |t|max = 0.15 GeV2

B(t) χ2/n.d.f. ρ σtot [mb] χ2/n.d.f. ρ σtot [mb]

β0 0.9 0.09± 0.01 112± 2.1 — —

β0 + β1t 0.9 0.10± 0.01 112± 3 1.0 0.09± 0.01 112± 3

β0 + β1t+ β2t
2 0.9 0.09± 0.01 112± 3 0.9 0.10± 0.01 112± 3

β0 0.9 0.09± 0.01 111± 2 2.1 0.07± 0.01 107± 2

β0 + 0.021 ln tc/t 0.8 0.12± 0.01 108± 2 0.9 0.12± 0.01 108± 2

In the TOTEM Collaboration analysis, a polynomial t-dependence for
the slope was used. While this approach yielded reasonable χ2 values, it did
not substantially affect the determination of ρ.

For high-energy forward elastic polarized p↑p scattering, the fit of the
analyzing power (1) typically assumes a predefined ρ value obtained from
the Regge fits. Therefore, in the HJET measurements at

√
s = 13.5 and

21.9 GeV, ρ already includes absorptive corrections (if any), making r5
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insensitive to non-flip absorptive corrections. However, for the STAR ex-
periment at

√
s = 200 GeV [14], these corrections may need to be explicitly

accounted for.

3. Discussion

Notably, Ref. [11] overlooked the fact that the interpretation of the ab-
sorptive factor (5) proposed in Ref. [10] was revised in Refs. [6, 9]. In the
revised approach, the absorptive effect is evaluated by regrouping the dia-
grams shown in Fig. 2. Rewriting Eq. (2) as

F nf(b) = i
[
1− eiχC(b)

]
× [1− (1− iρ)Im γN(b)] + γN(b) , (10)

the absorptive factor (5) becomes evident within this expression. In this
framework, the hadronic amplitude does not acquire a Coulomb phase. How-
ever, the effective correction to ρ, accounting for changes in the electromag-
netic amplitude’s phase (Φλ

C) and form factor (Φλ
NC), remains the same,

ρ → ρ+ δC, as obtained in the standard analysis based on Eq. (2).
Although the analysis in Ref. [11] relied on an outdated interpretation

of the absorptive correction, the conclusions regarding a potential bias in
the experimental values of ρ and the possible logarithmic dependence of the
hadronic slope B(t) on t remain valid. While these effects have not been
conclusively proven, they warrant further investigation.

When spin-flip (sf) amplitudes are considered, the combined non-flip and
single spin-flip eikonal amplitude can be expressed as

F nf+sf(b) = i
(
1− eiχC

)
+
(
γN + iγNχ

sf
C + χsf

C + γsfN

)
eiχC , (11)

where the term iγNχ
sf
C , omitted in Eq. (1), can be interpreted as an absorp-

tive correction to the spin-flip electromagnetic amplitude. This term mimics
the hadronic spin-flip amplitude and introduces a small but noticeable ef-
fective correction to the spin-flip parameter r5 in elastic p↑p scattering [15]

reff5 − r5 = (1− iρ)
ακp
2

BE

B +BE
≈ ακp

4
. (12)

For p↑A scattering, this correction is enhanced by the nuclear charge fac-
tor Z. As such, it must be carefully accounted for in heavy-ion analyzing
power measurements, such as those involving gold nuclei (Z = 79).
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