LÉVY α -STABLE GENERALIZATION OF THE ReBB MODEL OF ELASTIC PROTON–PROTON AND PROTON–ANTIPROTON SCATTERING*

Tamás Csörgő^{a,b,†}, Sándor Hegyi^b, István Szanyi^{a,b,c,‡}

^aELTE Eötvös Loránd University, 1117 Budapest, Pázmány P. s. 1/A, Hungary
^bHUN-REN Wigner RCP, 1525 Budapest 114, POB 49, Hungary
^cMATE Institute of Technology, KRC, 3200 Gyöngyös, Mátrai út. 36, Hungary

Received 15 December 2024, accepted 5 February 2025, published online 6 March 2025

The Lévy α -stable generalization of the ReBB model of elastic protonproton and proton-antiproton scattering is presented. The motivation for the future use of this model in describing experimental data is discussed.

DOI:10.5506/APhysPolBSupp.18.1-A19

1. Introduction

Bialas and Bzdak, in 2007, published models for elastic proton-proton (pp) scattering [1], the BB models for short. In these models, the proton is described as a bound state of constituent quarks, and the probability of inelastic pp scattering is constructed based on Glauber's multiple diffractive scattering theory [2]. In 2015, the BB model was extended: a real part of the scattering amplitude was added in a unitary manner [3], leading to the Real extended Bialas–Bzdak model, the ReBB model for short. The p = (q, d) version of the model that describes the proton as a bound state of a constituent quark and a single-entity constituent diquark is consistent with the experimentally observed features of elastic pp scattering. The basic ingredients of the BB model are the inelastic scattering probabilities of two constituents as a function of their relative transverse position and the quarkdiquark distribution inside the proton. In the BB [1] and ReBB [3] models, the constituent-constituent inelastic scattering probabilities have Gaussian shapes that follow from the Gaussian-shaped parton distributions of the constituents, characterized by the scale parameters R_q and R_d . The quark– diquark distribution inside the proton also has a Gaussian shape with the

^{*} Presented at the Diffraction and Low-x 2024 Workshop, Trabia, Palermo, Italy, 8–14 September, 2024.

[†] tcsorgo@cern.ch

[‡] Speaker, iszanyi@cern.ch

scale parameter R_{qd} that characterizes the separation between the quark and diquark constituents inside the proton. It was found in studies published in 2021 and 2022 [3, 4] that the ReBB model describes all the available data not only on elastic *pp* scattering, but also on elastic proton–antiproton $(p\bar{p})$ scattering in a statistically acceptable manner, *i.e.* with a confidence level (C.L.) $\geq 0.1\%$ in the kinematic range of 0.38 GeV² $\leq -t \leq 1.2$ GeV² and 546 GeV $\leq \sqrt{s} \leq 8$ TeV, where t is the squared four-momentum transfer and \sqrt{s} is the squared center-of-mass energy.

2. Need for an improvement of the ReBB model at low-|t|

At $\sqrt{s} = 8$ TeV, the ReBB model fails to describe the TOTEM low-|t| and TOTEM high-|t| data simultaneously with C.L. $\geq 0.1\%$ (see Fig. 1). The used χ^2 formula is the one derived by the PHENIX Collaboration [5].

Fig. 1. The ReBB model fails to describe simultaneously, with a statistically acceptable confidence level of C.L. > 0.1%, both the low-|t| and high-|t| TOTEM datasets of elastic pp collisions at $\sqrt{s} = 8$ TeV. Similar problems were reported at $\sqrt{s} = 7$ TeV in Ref. [3].

Interestingly, at $\sqrt{s} = 8$ TeV, the ReBB model describes the ATLAS low-|t|and TOTEM high-|t| data simultaneously with C.L. = 2.6% (see Fig. 2). It is true, however, that the TOTEM low-|t| data shows a strong non-exponential behavior with a statistical significance greater than 7σ [6], which is not reproduced by the ReBB model containing Gaussian-shaped distributions. Another interesting feature is that the ReBB model calibrated to the SPS UA4 $p\bar{p}$, Tevatron D0 $p\bar{p}$, and LHC TOTEM pp elastic $d\sigma/dt$ data in the kinematic range of 0.38 GeV² $\leq -t \leq 1.2$ GeV² and 546 GeV $\leq \sqrt{s} \leq 7$ TeV, perfectly describes the $pp \sigma_{tot}$ data as measured by the LHC ATLAS experiment, being systematically below the $pp \sigma_{tot}$ data as measured by the LHC

Fig. 2. The ReBB model, with an advanced χ^2 definition from the PHENIX experiment [5] that allows for systematic errors in the slope determination, describes simultaneously, with a statistically acceptable confidence level of C.L. > 0.1%, the merged low-|t| ATLAS and high-|t| TOTEM datasets of elastic *pp* collisions at $\sqrt{s} = 8$ TeV. This also resolves the problems reported at $\sqrt{s} = 7$ TeV in Ref. [3] when both the low-|t| and high-|t| TOTEM datasets are described simultaneously, however, the same method fails at $\sqrt{s} = 8$ TeV when both the low-|t| and high-|t| TOTEM datasets are included (see Fig. 1).

TOTEM experiment (see Fig. 3). Theoretically, $\sigma_{\text{tot}}(s) = 2 \text{ Im } T_{\text{el}}(s,t)|_{t\to 0}$. Further studies may be important with a model that is able to describe both ATLAS and TOTEM elastic pp data both at low-|t| and high-|t| with C.L. $\geq 0.1\%$.

Fig. 3. Description of the σ_{tot} data by the ReBB model calibrated to the SPS UA4 $p\bar{p}$, Tevatron D0 $p\bar{p}$, and LHC TOTEM pp elastic $d\sigma/dt$ data in the kinematic range of 0.38 GeV² $\leq -t \leq 1.2 \text{ GeV}^2$ and 546 GeV $\leq \sqrt{s} \leq 7 \text{ TeV}$.

3. Lévy α -stable generalized Bialas–Bzdak (LBB) model

In the p = (q, d) BB model, the inelastic scattering probability of two protons at a fixed impact parameter vector (\vec{b}) and at fixed constituent transverse position vectors $(\vec{s}_q, \vec{s}_d, \vec{s}'_q, \vec{s}'_d)$ is given by a Glauber expansion

$$\sigma_{\rm in}\left(\vec{b}, \vec{s}_q, \vec{s}_d, \vec{s}_q', \vec{s}_d'\right) = 1 - \prod_{a \in \{q,d\}} \prod_{b \in \{q,d\}} \left[1 - \sigma_{\rm in}^{ab} \left(\vec{b} - \vec{s}_a + \vec{s}_b' \right) \right] \,. \tag{1}$$

Generalized central limit theorems motivate the use of Lévy α -stable distributions. In the Lévy α -stable generalization of the Bialas–Bzdak (LBB) model, the parton distributions of the constituent quark and constituent diquark are now Lévy α -stable distributions, and the inelastic scattering probability for the collision of two constituents at a fixed relative transverse position \vec{s} of the constituents [7] is

$$\sigma_{\rm in}^{ab}(\vec{s}) = A_{ab}\pi S_{ab}^2 \int d^2 s_a L(\vec{s}_a | \alpha_{\rm L}, R_a/2) L(\vec{s} - \vec{s}_a | \alpha_{\rm L}, R_b/2) = A_{ab}\pi S_{ab}^2 L(\vec{s} | \alpha_{\rm L}, S_{ab}/2) , \qquad (2)$$

where $L(\vec{x} | \alpha_{\rm L}, R_{\rm L}) = \frac{1}{(2\pi)^2} \int d^2 \vec{q} \, \mathrm{e}^{i\vec{q}\cdot\vec{x}} \, \mathrm{e}^{-\left|q^2 R_{\rm L}^2\right|^{\alpha_{\rm L}/2}}$, $S_{ab} = \left(R_a^{\alpha_{\rm L}} + R_b^{\alpha_{\rm L}}\right)^{1/\alpha_{\rm L}}$, and $a, b \in \{q, d\}$. The distribution of the constituents inside the proton is now given in terms of a Levy α -stable distribution (m_q is the mass of the quark and m_d is the mass of the diquark) [7]

$$D(\vec{s}_q, \vec{s}_d) = (1+\lambda)^2 L(\vec{s}_q - \vec{s}_d | \alpha_{\rm L}, R_{qd}/2) \,\delta^{(2)}(\vec{s}_d + \lambda \vec{s}_q) \,, \qquad (3)$$

where $\int d^2 \vec{s}_q d^2 \vec{s}_d D(\vec{s}_q, \vec{s}_d) = 1$, $\lambda = m_q/m_d$, and $\vec{s}_d = -\lambda \vec{s}_q$.

The probability of inelastic scattering of protons at a fixed \dot{b} is given by averaging over the constituent positions inside the protons

$$\tilde{\sigma}_{\rm in}\left(\vec{b}\right) = \int \mathrm{d}^2 \vec{s}_q \,\mathrm{d}^2 \vec{s}_d' \,\mathrm{d}^2 \vec{s}_d \,\mathrm{d}^2 \vec{s}_d' D\left(\vec{s}_q, \vec{s}_d\right) D\left(\vec{s}_q', \vec{s}_d'\right) \sigma_{\rm in}\left(\vec{b}, \vec{s}_q, \vec{s}_d, \vec{s}_q', \vec{s}_d'\right) \,. \tag{4}$$

The elastic scattering amplitude $\widetilde{T}_{\rm el}(s, b)$ is given via $\tilde{\sigma}_{\rm in}(s, b)$ — where $b = |\vec{b}|$ and the dependence on s follows from the s-dependence of the free parameters — as

$$\widetilde{T}_{\rm el}(s,b) = i \left(1 - e^{i \,\alpha_R \,\widetilde{\sigma}_{\rm in}(s,b)} \sqrt{1 - \widetilde{\sigma}_{\rm in}(s,b)} \,\right) \,, \tag{5}$$

and $T_{\rm el}(s,t)$ is obtained via Fourier transformation.

The new free parameter of the Levy α -stable generalized model is $\alpha_{\rm L}$, the Lévy index of stability; if $\alpha_{\rm L} = 2$, the ReBB model with Gaussian distributions is recovered. The power of a simple Lévy α -stable model for elastic scattering was demonstrated in Ref. [8]: good descriptions were obtained to all SPS, Tevatron, and LHC data on low-|t| pp and $p\bar{p} \, d\sigma/dt$ in the kinematic range of 0.02 GeV² $\leq |t| \leq 0.15$ GeV² and 546 GeV $\leq \sqrt{s} \leq 13$ TeV, where the Lévy index of stability is compatible with the value of 1.959 ± 0.002 implying that the impact parameter distribution has a heavy tail.

4. Summary

The Lévy α -stable generalization of the Bialas–Bzdak model is made by generalizing from Gaussian shapes to Lévy α -stable shapes both (i) the inelastic scattering probabilities of two constituents and (ii) the quark– diquark distribution inside the proton. The LBB model is expected to describe simultaneously the low-|t| and high-|t| domains of elastic pp and $p\bar{p} \ d\sigma/dt$ with a Lévy index of stability $\alpha < 2$. Thus, the next step is to apply the full LBB model to describe the data. Given that the LBB model describes the data in a statistically satisfying manner, *i.e.* with C.L. $\geq 0.1\%$, it can be used to study, *e.g.* (i) the discrepancy between ATLAS and TOTEM cross-section measurements, and (ii) after considering the effects of the Coulomb-nuclear interference, the odderon contribution to parameter $\rho_0 = \text{Re } T_{\text{el}}(s,t)/\text{Im } T_{\text{el}}(s,t)|_{t\to 0}$ at $\sqrt{s} = 13$ TeV. 1 - A19.6

The research was supported by the ÚNKP-23-3 New National Excellence Program of the Hungarian Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund; by the NKFIH grant K147557 and 2020-2.2.1-ED-2021-00181; by the Research Excellence Programme and the Flagship Research Groups Programme of MATE, the Hungarian University of Agriculture and Life Sciences.

REFERENCES

- [1] A. Bialas, A. Bzdak, Acta Phys. Pol. B 38, 159 (2007).
- [2] R.J. Glauber, G. Matthiae, Nucl. Phys. B 21, 135 (1970).
- [3] F. Nemes, T. Csörgő, M. Csanád, Int. J. Mod. Phys. A 30, 1550076 (2015).
- [4] T. Csörgő, I. Szanyi, Eur. Phys. J. C 81, 611 (2021).
- [5] PHENIX Collaboration (A. Adare *et al.*), *Phys. Rev. C* 77, 064907 (2008).
- [6] TOTEM Collaboration (G. Antchev et al.), Nucl. Phys. B 899, 527 (2015).
- [7] T. Csörgő, S. Hegyi, I. Szanyi, Universe 9, 361 (2023).
- [8] T. Csörgő, S. Hegyi, I. Szanyi, Universe 10, 127 (2024).