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We demonstrate the breakdown of collinear factorisation for the exclu-
sive photoproduction at leading twist of a π0γ pair, sensitive to both quark
and gluon GPD channels. For the very first time in the case of an exclusive
process, we demonstrate the breakdown of collinear factorisation through
soft-to-collinear Glauber exchanges. We show that the amplitude fails to
factorise due to the presence of a Glauber pinch, which has the same power
counting as the standard collinear pinch. The Glauber pinch that occurs
here is peculiar, since the mechanism that produces it involves two-loop
integrals. This is corroborated by an explicit calculation of the gluon GPD
channel to pair photoproduction, which leads to a divergent amplitude al-
ready at leading twist-2 and at leading order in αs. On the other hand, for
processes where the gluon GPD channel is forbidden, for example when the
outgoing meson is a charged pion or a rho meson, collinear factorisation
works without any issues.
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1. Introduction and kinematics

For various 2 → 2 scattering processes, such as deeply-virtual Compton
scattering (DVCS) and deeply-virtual meson production (DVMP), collinear
factorisation has explicitly been shown to hold at all order in perturbation
theory (in αs) at the leading twist. These processes have been extensively
studied in order to get access to Generalised Parton Distributions (GPDs).
More recently, it has been proposed to use the 2 → 3 exclusive processes [1–3]
as a complementary way to access GPD, in particular in the quark chiral-
odd sector, for which a collinear factorisation is also expected, due to the
large invariant mass of the two particle produced in the reaction, playing the
role of a hard scale. Up to now, the exclusive di-photon photoproduction
process [2] on a nucleon target is the only 2 → 3 one that has been calculated
at NLO in αs, and shown to be consistent with collinear factorisation. The
first proof of collinear factorisation for a whole family of 2 → 3 exclusive
processes was obtained in [4], where it was pointed out that the large relative
transverse momentum between the produced pair of particles provides the
hard scale (which is a stronger constraint than the large invariant mass).

Still, in the peculiar case of the exclusive photoproduction of a π0γ pair
on a nucleon target, assuming collinear factorisation, we faced, at leading
order and leading twist, a divergence of the amplitude when considering the
t-channel gluon exchange. This occurs when simultaneously the momentum
fraction z of one of the (anti)quark entering the pion (whose distribution is
given by the pion distribution amplitude (DA)) goes to zero (endpoint of
the DA), and when the momentum fraction y of one of the gluons emerging
from the nucleon (whose distribution is given by the gluonic GPD) goes to
zero (breakpoint of the GPD)1. These proceedings focus on the origin of this
singular behaviour in the endpoint/breakpoint regions.

We denote the momenta of the particles in our process by

γ(q) +N(pN ) → γ′(q′) +N ′(pN ′) + π0(pπ) , (1)

with q2 = q′2 = 0, p2N = p2N ′ = m2
N , and p2π = m2

π, (mN and mπ are the
nucleon and pion mass, respectively). We define P = (pN + pN ′)/2 , ∆ =
pN ′ − pN , t = ∆2 . Collinear factorisation is expected to hold [4] when q′

and pπ have large relative transverse momenta, |q′⊥|, |pπ,⊥|, in the centre-of-
mass (CM) frame w.r.t. to ∆ and q. The hard scale is thus Q ∼ |q′⊥|, |pπ,⊥|,
much larger than the soft scales in the process, and collinear factorisation
should hold when λ ∼ {

√
|t|, mπ, mN , ΛQCD}/Q → 0 . Power counting

is easier in the CM frame w.r.t. to ∆ and pπ, in which ∆⊥ = pπ,⊥ =
0, with q and q′ now having large transverse momentum. We thus work

1 A breakpoint is a frontier between DGLAP and ERBL regions, with different physical
meaning of the hard process (q or q̄ emission and reabsorption, versus qq̄ exchange).
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in a lightcone coordinate system where the momenta ∆ and pπ define the
n̄ and n directions, respectively. We introduce the lightcone components
V µ = (V +, V −, V⊥) of any 4-vector, with V + = n · V , V − = n̄ · V , and
V µ
⊥ = V µ−V +n̄µ−V −nµ (n̄ and n are light-like vectors with n̄ ·n = 1). The

various momenta in the process scale as pN , pN ′ , ∆, P ∼ (1, λ2, λ)Q , pπ ∼
(λ2, 1, λ)Q , q, q′ ∼ (1, 1, 1)Q , with q2 = q′2 = 0. Photons having positive
energy, it implies that q+, q−, q′+, q′− > 0. We now fix Q = 1 for simplicity.

2. Leading regions of partonic loop momenta

We expand the amplitude A =
∑

α fαλ
α as a power series in λ, which

can be decomposed into various sub-graphs, such as soft S, collinear C
and hard H. Each sub-process only involves loop or external momenta
of specific scalings, e.g., a soft subgraph involves only soft momenta ks ∼
(λs, λs, λs), with arbitrary λs ≪ 1, independent of λ fixed through the kine-
matics of our process. Two typical choices are relevant: λs = λ, named
soft scaling, and λs = λ2, called ultrasoft (or usoft) scaling. Besides the
(u)soft scaling, the peculiar Glauber scaling k+Gk

−
G ≪ |k2G,⊥| , implying kG ∼

(λ2, λ2, λ), (λ, λ2, λ), . . . , with different possibilities for how exactly the
Glauber momentum kG scales, is of particular relevance. While the “collinear-
to-collinear” Glauber scaling kG ∼ (λ2, λ2, λ) is well-known to be pinched in
the classic Drell–Yan case [5], here the “n̄-collinear-to-soft Glauber” scaling,
kG ∼ (λ, λ2, λ) is particularly important.
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Fig. 1. Left: Two relevant leading PSSs. A and B denote collinear regions for
the incoming/outgoing nucleon and pion, respectively. The dots next to the lines
indicate longitudinally polarised gluons. (a) The collinear PSS. The thick gluons
are transversely polarised. (b) Another PSS involving the exchange of a soft gluon
between the nucleon sector A and the soft quark line joining the pion B to the
incoming photon C at S. Right: An explicit 2-loop example to investigate the
pinch structure and the power counting. For soft k and l, it reduces to the PSS
in (b), as shown on the bottom right.
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Let us identify the leading (smallest α) contribution in A, and show
that it can be decomposed in terms of simple universal subgraphs. Obvi-
ously, the hard subgraph H is process-dependent, calculable order-by-order
in perturbative QCD. Saying that collinear factorisation applies to an ex-
clusive process at leading twist (or leading power) means that the leading
regions only involve collinear subgraphs, corresponding to universal non-
perturbative functions, e.g. GPDs and DAs. Pinches of the momenta of the
internal partons connecting the various possible subgraphs lead to a given
scaling of the amplitude. A given loop momentum component is said to
be pinched, i.e. O(λ), if there exist propagators with poles on the opposite
sides of the integration contour, separated by O(λ). A standard collinear
pinch means that the loop momentum connected to the collinear subgraph
is, e.g., (1, λ2, λ). The loop momentum configuration when λ → 0 is called a
pinch-singular surface (PSS). The Libby–Sterman (LS) analysis [6] provides
the classification of pinched configurations and their associated power in λ .
We have proven [7] that for gluon exchange, only two contributions exist at
the leading power (see Fig. 1 (left)). Figure 1 (a), typical of collinear fac-
torisation, may be ruined by the new topology of Fig. 1 (b), with a Glauber
gluon exchange from the nucleon sector A to the soft quark line, passing
through S, which connects the incoming photon C to the outgoing pion B.
Besides, the region corresponding to a genuinely soft gluon is subleading.
Since the LS analysis focuses only on collinear, hard, and usoft scalings, one
should confirm that the diagram in Fig. 1 (b) is both pinched and leading
when the soft gluon exchange has a collinear-to-soft Glauber scaling and
the quark through S has strictly soft scaling (i.e. its momentum scales as
(λ, λ, λ)).

3. An explicit diagram with a leading power Glauber pinch

Focusing on the particular fixed order 2-loop diagram (in l and k) shown
on the right panel of Fig. 1, the amplitude M in the Feynman gauge reads

M =

∫
Fµ′ν′

A gµµ′gνν′tr
[
Fµν
H FB

]
, Fµ′ν′

A =
tr
[
/Aγν

′
(
/pA − /l

)
γµ

′
]

[l2 + iε]
[
(l −∆)2+ iε

][
(pA − l)2+ iε

] ,
FB = dk+d2k⊥

/k/B
(
/pπ − /k

)
[k2 + iε]

[
(pπ − k)2 + iε

] [
(pB − k)2 + iε

] ,
Fµν
H = dk−dl+

/ϵ∗q′
(
/q′ + /pπ − /k

)
γµ

(
/q − /k − /l

)
/ϵq

(
/k + /l

)
γν[

(q′ + pπ − k)2 + iε
][
(q − k − l)2 + iε

][
(k + l)2 + iε

] . (2)
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Here, ϵq and ϵ∗q′ are the polarisation vectors of the incoming and outgo-
ing photons, respectively, pA ∼ (1, λ2, λ) and pB ∼ (λ2, 1, λ) are generic
collinear loop momenta associated to their corresponding regions, and A
and B are sub-amplitudes defined by their vector component in the Dirac
space2, including the external quark propagators as well as the measures
d4pA and d4pB, respectively. It can be shown that A ∼ (1, λ2, λ) and
B ∼ (λ3, λ, λ2) [7].
Glauber pinch. Soft regions should be always explored since a propagator
with soft momentum, and its derivative, are both vanishing, thus solving
the Landau equations. Whether such pinches are of leading power should
be further scrutinised. To analyse the Glauber pinch, we thus start from
the soft scaling for both loop momenta k, l ∼ (λ, λ, λ), and then determine
whether the propagators force any of the lightcone components of l to be
much smaller. Propagators in Fµ′ν′

A do lead to the pinching of l− ∼ O(λ2)

(l −∆)2 + iε = −2∆+
(
l− +O

(
λ2

)
+ iε

)
, (3)

(pA − l)2 + iε = −2p+A
(
l− +O

(
λ2

)
− sgn(p+A)iε

)
, (4)

when p+A > 0, noting that ∆+ < 0 in our kinematics. This is just the same
pinching of l− as in the standard collinear case. Such a pinch of l− alone does
not yet imply that l is pinched in the Glauber region: one may still be able
to deform l+ to be O(1), l then becoming an n̄-collinear momentum [4, 8].

Looking at the poles in l+ from the propagators in Fµν
H , we find that

(k + l)2 + iε = 2k−
(
l+ +O(λ) + sgn(k−)iε

)
, (5)

(q − k − l)2 + iε = −2q−
(
l+ +O(λ)− iε

)
, (6)

so that l+ is pinched to be O(λ) when k− > 0, noting that q− > 0. Thus, l
is pinched to have the n̄-collinear-to-soft Glauber scaling, l ∼

(
λ, λ2, λ

)
.

Power counting in the collinear region. We now perform the power counting
on the amplitude M in the collinear region, taking l ∼

(
1, λ2, λ

)
and k ∼(

λ2, 1, λ
)
. Furthermore, the Ward identities show that the “correct” leading

power is given by pure transverse indices µ, ν, µ′, ν ′ [7, 9]. Thus, we obtain

F
µ′
⊥ν′⊥

A ∼ λ4λ
2

λ6
= λ0 , FB ∼ λ4λ

3

λ6
= λ , Fµ⊥ν⊥

H ∼ λ0λ
0

λ0
= λ0 , (7)

which fixes the leading power to be λ1, in accordance with LS [6].

2 Without changing the conclusions, we only project qq̄ pair entering the pion onto the
vector component in the Dirac space, leaving aside the axial vector component.
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Power counting in the Glauber region. We now take l ∼ (λ, λ2, λ) and
k ∼ (λ, λ, λ). While the indices µ, µ′, which correspond to the n̄-collinear
momentum l−∆ (see Fig. 1), should be transverse like in the above collinear
power counting, choosing ν =⊥ and ν ′ = + for the Glauber gluon gives the
proper power counting for the diagram of Fig. 1 (right) [7, 9]. Thus, we get

F
µ′
⊥+

A ∼ λ4λ
1

λ6
= λ−1 , FB ∼ λ3λ

3

λ4
= λ2 , Fµ⊥ν⊥

H ∼ λ2λ
1

λ3
= λ0 , (8)

just the same leading power λ1 as for the collinear region discussed above.

4. Conclusion

In the exclusive π0γ pair photoproduction process, we have identified an
n̄-collinear-to-soft Glauber pinch which we have also shown to contribute to
the leading power like the standard collinear pinch. The divergence in the
amplitude, when collinear factorisation is assumed, is a direct consequence
of this identified Glauber pinch, thus breaking the collinear factorisation of
the process. Indeed, we have shown in [7, 9] that the (u)soft pinch (which
has the same topology as Fig. 1 (b)) is of subleading power. Moreover,
such a Glauber pinch also occurs in the similar 2 → 3 exclusive processes
that allow for two-gluon exchanges in the t-channel, such as the exclusive
diphoton production from π0N scattering. Still, processes where only the
quark exchange channel is present are safe from any factorisation-breaking
effects.
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