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High-energy (or small-z) logarithms are enhanced in proton scattering
processes when the collider centre-of-mass energy is much larger than the
hard scattering scale. In the picture of collinear factorisation, their resum-
mation affects QCD cross sections and DGLAP evolution kernels. In recent
years, it was shown that small-x resummed theory can be used to improve
predictions for the Parton Distribution Function (PDF) fitting as well as
parton level cross section studied at the LHC, namely the single-Higgs and
heavy-quark pair production.
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1. High-energy logarithms in QCD

Theory predictions involving at least one initial-state hadron are usually
computed with the use of collinear factorisation. If one considers the simple
case of deeply-inelastic e”p scattering by a photon of virtuality Q2, this is
written as .

dz x
7 (0.Q%) = [ Fei (e (@) 5 (2.07). (1)
x

where the hadron-level o is obtained as a convolution of a short-range coeffi-
cient function C; and a parton distribution function (PDF) f; across values

of a momentum fraction variable z from 1 down to z = %2, with S being
the centre-of-mass energy of the overall proton—electron collision. C; can be
computed as an asymptotic series of the strong coupling ag using pertur-
bation theory. Instead, f; encodes the long-range part of QCD interaction
and is usually fitted from experimental data. Finally, the PDF gains a de-
pendency on the energy scale Q? when QCD corrections to scattering are
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considered on top of the Born-level scattering and is described by the well-
known DGLAP equation

1

df; (z, u? dz z

MQJCZ(SWQM) = / 7Pij (2,05 (12)) f; (;,MQ) ; (2)
x

where the integral kernels P;; are obtained perturbatively from the splitting

of quarks and gluon in the collinear limit.

The n'® order of the perturbative series of both C; and P;; will include
corrections in the form of a?% log” (%) for 0 < k <n — 1, forming a single-
logarithmically enhanced series. When the ratio z is small enough, these
terms can realise the condition as(Q?) log (%) ~ 1, inducing a failure of fixed-
order perturbation theory. When this is the case, a different computational
scheme must be adopted to account for these corrections to all power of «y.

This problem has been studied extensively across the last four decades
with a number of different techniques, all leading back to the program of
Reggeization of gluon exchange amplitudes |1, 2]. On the side of PDF evolu-
tion, resummation can be achieved through the BFKL equation |3, 4]. This
relation governs PDF evolution in the variable x, thus implicitly resumming
the corresponding logarithms instead of those of the energy scale. Requiring
PDFs to satisfy both equations, imposes a consistency constraint between the
splitting functions and the BFKL kernel. This duality enables resummation
of small-x logarithms in the splitting function fixed-order knowledge BFKL
kernel [5-8]. Resummation of small-z logarithms in the coefficient functions
instead can be performed using the k¢-factorisation formalism |9, 10]. Briefly,
this approach leverages the knowledge of the resummed splitting function to
take into account the effect of soft radiative corrections giving rise to small-z
logarithms.

1.1. PDFs at low-z

The effect of small-x resummation in PDF determination was first consid-
ered in Refs. [11, 12| for general PDF parametrisation and later in Refs. |13,
14]. In both cases, the resummed theory predictions were obtained from the
public code HELL in combination with APFEL [15-17]. Generally speaking,
the use of resummed theory predictions leads to an improved agreement with
HERA DIS data, especially for the small-z and Q2 datapoints.

As a sample of the role of resummation, the left plot of Fig. 1 shows
a comparison of the gluon-to-gluon splitting function between resummed-
and fixed-order theory. Above x ~ 1072, the resummed curves smoothly
match with fixed-order results. Then at x < 1072 and below, the small-z
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logarithms in the NNLO splitting functions come dominant, leading to dras-
tically different behaviours for each order in as. Resummation restores the
asymptotic behaviour at small-z, which follows the same scaling up to sub-
leading shifts between NLO+NLL and NNLO+NLL curves.
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Fig.1. Left panel: Comparison of the resummed and matched FP,, at LO+LL
(dotted green), NLO+NLL (dashed purple), and NNLO+NLL (dot—dot—dashed
blue) accuracy against the corresponding fixed order (in black). The error bands are
an estimate of the size of subleading logarithms. Originally appeared in Ref. [17].
Right panel: Comparison of NNLO and NNLO+NLLz fit results for the gluon
distribution at the scale of @ = 1.64 GeV. Originally appeared in Ref. [11].

The right panel of Fig. 1 shows instead the gluon PDF at the scale
@ = 1.64 GeV. The inclusion of resummation in the PDF determination
results in an enhancement around z ~ 5 x 10~2 with respect to the NNLO
PDF. This difference brings the curve very close to the values obtained in
NLO and NLO+NLLz fits, suggesting improved stability of the resummed
determination compared to the fixed-order theory. More generally, the large
enhancement of the gluon distribution results in significant differences in
any cross section computed with resummed PDFs.

1.2. LHC phenomenology

Beside PDF determination, small-z logarithms were studied in phe-
nomenological studies of several LHC processes up to partial NLL accuracy.
An in-exhaustive list includes multi-jet production [18-20], charmonium
[21-24], Drell-Yan [25], rapidity-separated jets [26-28|, and forward Higgs
production [29-31]. Likewise, in the HELL formalism, small-z resummation
with matching PDFs was considered for inclusive Higgs [32] and heavy-quark
pair [33] production at the differential level. In Fig. 2, we show the ratio
of cross sections between N3LO-+LL and N3LO for v/S € (2,100) TeV. The

effect of resummation is small and undetectable within uncertainty for the
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ggH production cross section --- effect of small-x resummation
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Fig. 2. Ratio of the N3LO Higgs cross section with and without resummation to the
N3LO fixed-order cross section, as a function of the collider centre-of-mass energy.
Originally appeared in Ref. [32].

small collider up to /S ~ 14 TeV and grows larger beyond, up to 10% at
V'S ~ 100 TeV. This effect is largely driven by resummed PDFs, with the
coefficient function resummation providing an almost negligible correction.
Instead, in Fig. 3, we show the distribution d;&‘qf as a function of quark ra-
pidity in a slice of transverse momentum. In both cases, we combine the LL
result obtained with PDF from NNPDF31sx and matched to either the LO
and NLO fixed order. At LO+LL, the resummation generates an enhance-
ments of a factor 1.4 flat across values of rapidity. A similar sized effect is
maintained at NLO+LL, with an additional modulation suppressing central
Y ~ 0 rapidity and favouring large |Y| ~ 5.

Heavy quark pair production at LHC 13 TeV, using NNPDF31sx Heavy quark pair production at LHC 13 TeV, using NNPDF31sx
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Fig. 3. The distribution in rapidity and transverse momentum of the bottom quark,

plotted as a function of the rapidity for p; = 2 GeV, for bottom-pair production at
the LHC 13 TeV. Originally appeared in Ref. [33]
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