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Data on the structure of sulphur isotopes close to the neutron drip-line
are rather scarce. The excited states of the very neutron-rich 46S and 47S
nuclei have been investigated by in-beam gamma-ray spectroscopy at the
Radioactive Isotope Beam Factory at the RIKEN Nishina Center. After
multi-nucleon knockout reactions on the liquid-hydrogen MINOS target,
the 2+1 → 0+1 gamma transition of 46S, already reported in literature, has
been confirmed. Additionally, two new gamma rays have been assigned to
this isotope and one gamma line has been observed in 47S.

DOI:10.5506/APhysPolBSupp.18.2-A17

1. Introduction

In the last 40 years, the experimental results obtained using radioac-
tive ion beams showed that the shell closures usual in stable nuclei are not
valid over the nuclear chart, namely shell closures vanish and new ones
develop [1]. Indeed, the neutron-rich nuclei between 30–50 mass numbers
exhibit interesting nuclear structure phenomena: the N = 20 and 28 neu-
tron shell closures disappear at larger N/Z ratios [2–5] and new sub-shell
closures evolve at N = 32 and N = 34 neutron numbers approaching the
neutron drip line [6, 7].
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The neutron-rich sulphur isotopes show several phenomena related to
the evolution of the shell closures: while the N = 20 shell is closed in 36S,
40S, and 42S show the characteristics of the midshell nuclei, contrary to
expectations, in 44S the N = 28 shell closure vanishes [8–10]. The nuclei 46S
and 47S having 30 and 31 neutrons, respectively, are located between the
N = 28 and N = 32 neutron numbers. Prior information on these nuclei
has been rather scarce. Up to our work, only the 2+1 state at 952 keV has
been identified in 46S [11] and no spectroscopic information was available for
47S. Our aim was to collect in-beam gamma-ray spectroscopy information
on 46S and 47S.

We analyzed data collected in the last SEASTAR III campaign, where
the setting of the setup was optimized for the production of isotopes around
56Ca. Thanks to the large acceptance of the SAMURAI spectrometer, it
was possible to gather data for sulphur nuclei close to the neutron drip-line
besides the main goals of the experiment. Previous results obtained in the
same experiment can be found in Refs. [12–26].

2. Experimental methods

The experiment was performed at the Radioactive Isotope Beam Fac-
tory, operated by the RIKEN Nishina Center and the Center for Nuclear
Study of the University of Tokyo. To produce very neutron-rich isotopes
with A ∼ 40–60 mass number, a primary beam of 70Zn with an energy of
345 MeV/u was used. The primary beam impinged on a 9Be target with
a thickness of 10 mm. The separation of the secondary cocktail beam was
done by the BigRIPS separator [27]. For the identification of the radioac-
tive beam particles, the magnetic rigidity–energy loss–time-of-flight (Bρ–
∆E–TOF) method [28] was applied. The velocity was determined from the
TOF information provided by the difference in time signals from three plas-
tic scintilators. The Bρ value was obtained by measuring the position and
the angle in parallel plate avalanche counters. The atomic number Z was
deduced from the ∆E information of the beam particles in an ionization
chamber [29]. The incoming particle identification in BigRIPS gated on
outgoing 46S and 47S ions can be seen in Fig. 1 (a).

The MINOS liquid-hydrogen target was used to produce the nuclei of
interest via multi-nucleon knockout reactions [30, 31]. The length of the
target was 151 mm and it was surrounded with a Time Projection Chamber
(TPC). The reaction point was reconstructed with a resolution of 5 mm
(FWHM) and with an overall efficiency of 65%. The emitted gamma rays
were detected by the DALI2+ detector array [32, 33] placed around the
MINOS device. It consisted of 226 NaI(Tl) scintillators. The total efficiency
of DALI2+ was about 30% at 1 MeV gamma-ray energy. Its energy resolution
was about 11% for a moving source with a velocity of 0.6 c.
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Fig. 1. (Color online) (a) Particle identification plot for incoming ions in BigRIPS,
gated on 46S outgoing ions. The different isotopes contributing to the production of
46S are visible. (b) Particle identification in the SAMURAI spectrometer without
gating on incoming ions. 46S and 47S are highlighted in red/gray and in black
circles, respectively.

The identification of the fragments was performed by the SAMURAI
spectrometer [34] based on the Bρ–∆E–TOF information. The Bρ values
were deduced from the trajectories of the ions using multi-wire drift cham-
bers. A plastic scintillator wall of 24 segments provided the ∆E and TOF
information relative to a plastic detector. The unambiguous identification of
the fragments was done by the multi-dimensional fit procedure of the ROOT
framework [35]. The particle identification in the SAMURAI spectrometer
without gating on incoming ions is shown in Fig. 1 (b). We achieved 7.4σ
for separation in Z and 9.4σ for separation in A/Q for the sulphur isotopes.

3. Results
46S was produced by the (p, 2p1n), (p, 2p2n), (p, 3p2n), (p, 4p2n), and

(p, 4p3n) multi-nucleon knockout reactions from the 48Cl, 49Cl, 50Ar, 51K,
and 52K secondary beams, respectively. Most events originated from the
50Ar with 2p2n knockout (43%), 49Cl with 1p2n knockout (25%), and 48Cl
with 1p1n knockout (17%). A total of 380 events related to 46S were collected
during the experiment. 47S was populated from similar secondary-beam
particles as 46S, mainly from 48Cl, 49Cl, and 50Ar. Although the statistics
was very low, we could collect altogether 57 events associated with 47S.

In order to increase the photopeak efficiency of the DALI2+ array, an
add-back procedure in the analysis was applied. During this procedure, the
hits in the adjacent units (< 15 cm) in an event were merged. The emitted
gamma rays were Doppler-corrected using the vertex position determined
by the TPC and the projected trajectory of the ions entering the target.



Excited States in the Neutron Rich Nuclei 46S and 47S 2-A17.5

Figure 2 shows the Doppler-corrected singles gamma-ray spectrum for 46S
including all the reaction channels indicated by (p,XpY n). Three dominant
peaks are visible in the spectra: the strongest one is at around 950 keV, and
two smaller ones are at around 1500 keV and 2700 keV. The most intense
peak corresponds to the gamma line with an energy of 952 keV already
identified in 46S [11]. We assign the two additional gamma rays also to 46S.
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Fig. 2. Doppler-corrected singles gamma-ray spectrum for 46S originating from all
the reaction channels using vertex reconstruction and the add-back procedure. The
data with shaded area represent the experimental spectrum.

Due to the low statistics, we could not deduce gamma–gamma coinci-
dence relations for the transitions in 46S. In order to gain information on the
placement of the gamma rays in the level scheme, spectra gated by different
multiplicity conditions were sorted and added together. The multiplicity
spectra are presented in Fig. 3. In the spectrum corresponding to multiplic-
ity equal to one (M = 1), the peak at an energy of 950 keV is increased
as it can be seen in Fig. 3 (a). Accordingly, we confirm that the ∼ 950 keV
gamma ray decays from the first 2+ state directly to the 0+ ground state. In
the spectrum belonging to higher gamma-ray multiplicities (M > 1), gamma
lines corresponding to transitions decaying in a cascade should be more vis-
ible. The peaks at about 1500 keV and 2700 keV are more pronounced in
this spectrum as it can be seen in Fig. 3 (b). Therefore, we place the two
new transitions feeding the first 2+ state.
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Fig. 3. Doppler-corrected multiplicity gamma-ray spectra for 46S originating from
all the reaction channels using vertex reconstruction and the add-back procedure.
The data with shaded area represent the experimental spectrum. (a) Events with
multiplicity equal to 1 (M = 1). (b) Events with multiplicity larger than 1 (M > 1).

Despite the low statistics, we could collect counts in the singles gamma-
ray spectrum of 47S. A clear peak at about 800 keV was observed in the
spectrum. Hence, we assign this gamma ray to 47S.

4. Conclusion

In-beam gamma-ray spectroscopy of 46S and 47S has been performed by
multi-nucleon knockout reactions. The already known transition has been
confirmed in 46S. Additionally, two new transitions have been assigned to this
nucleus. In 47S one gamma ray has been identified. The comparison of the
obtained experimental results with theoretical calculations are in progress.
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