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The structure of the low-lying quadrupole bands in 180Hf and 182W
is investigated with the use of a microscopically derived IBM-1 Hamil-
tonian. For each isotope, a potential energy curve is constructed from
self-consistent mean-field calculations, employing a Skyrme energy density
functional. The fermionic potential energy curve is subsequently mapped
onto the corresponding bosonic one, thus leading to the derivation of the
IBM-1 Hamiltonian parameters. These parameters are then used as inputs
for the calculation of energy spectra and B(E2) transition strengths for the
ground state and γ bands in the examined isotopes. The results are com-
pared to experimental data, showing an overall good agreement. Potential
future applications of this mapping method are also discussed.
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1. Introduction

Triaxiality [1–3] in atomic nuclei has been a long-standing puzzle in nu-
clear structure, its nature and origins being the subject of numerous experi-
mental as well as theoretical studies over the years. The topic has attracted
considerable attention in recent years, with studies suggesting the presence
of triaxiality over extended regions of the nuclear chart [4–6].

In our recent paper [7], we proposed a method of incorporating triax-
iality into the classical limit of the interacting-boson-model-1 (IBM-1) [8–
10], where only one- and two-body terms were considered. To that end,
the proxy-SU(3) [11–13] symmetry was employed. Fermionic proxy-SU(3)
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highest weight (h.w.) irreps were used to derive a γ-deformation value for
the isotopes under examination, which was subsequently incorporated into
the IBM-1 potential energy curve (PEC). Resembling the method described
in [14–16], a mapping was performed between the IBM-1 PEC and a cor-
responding PEC resulting from self-consistent mean-field (SCMF) calcula-
tions [17], to derive the IBM-1 Hamiltonian parameters. These microscop-
ically derived parameters were then used as inputs for the calculation of
energy spectra and B(E2) transition strengths for the even–even Hf and W
isotopes under consideration.

It was shown that the inclusion of this γ deformation, of microscopic
origin, derived in a parameter-free way through the use of proxy-SU(3)
h.w. irreps, as dictated by the Pauli principle and the short-range nucleon–
nucleon interaction, led to significantly improved results compared to axially-
symmetric calculations, in good agreement with experiment.

In this contribution, we intend to give a brief outline of the theoretical
method implemented in our calculations, and feature selected results for the
cases of 180Hf and 182W. For the interested reader, the full scope of the work,
along with an in-depth discussion of the results, can be found in [7].

2. Theoretical procedure

For the construction of the microscopic PECs, SCMF calculations are
performed on a two-dimensional grid of the r–z plane, with a constraint
been placed on the quadrupole deformation variable, β. The axial Hartree–
Fock+Bardeen–Cooper–Schrieffer (HF+BCS) code SkyAx [17] is employed,
utilizing the SV-bas [18] Skyrme energy density functional (EDF), along with
a density-dependent δ-force used for the pairing (see [7, 17] for more details).

Regarding the IBM-1 PECs, the extended consistent Q formalism
(ECQF) is employed to write the Hamiltonian as

H(ζ, χ) = c

[
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ζ

4NB
Q̂χ · Q̂χ

]
, (1)

where NB is the number of valence bosons, n̂d is the number operator for
quadrupole bosons, Q̂χ = (s†d̃+d†s)+χ(d†d̃ )(2) is the quadrupole operator,
and c is a scaling factor.

The corresponding IBM-1 energy surface, EIBM(β̄, γ) is derived by using
the coherent state formalism [8–10] of the IBM, as [19]
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where Cβ = β̄/β is a proportionality coefficient relating the bosonic (β̄)
and fermionic (β) quadrupole deformation variables. Equation (2) relates
the structural parameters (χ, ζ) of (1) with the (β, γ) classical coordinates
linked to the Bohr geometrical variables. More specifically, ζ is related to
the axial quadrupole deformation parameter, β, while χ is associated with
the triaxiality parameter, γ.

Finally, the proxy-SU(3) approximation to the shell model is employed
to derive an intrinsic γ-deformation value [20, 21]

γs = arctan

(√
3(µ+ 1)

2λ+ µ+ 3

)
, (3)

where (λ, µ) are the Elliott labels of the proxy-SU(3) h.w. irreps. By in-
corporating (3) into (2), we obtain the IBM-1 PEC. Its parameters, namely
(χ, ζ, c, Cβ) are determined through a mapping onto the SCMF PEC, where
the aim is to achieve an optimal reproduction of the overall shape and cur-
vature of the latter, up to a few MeV from its absolute minimum (Fig. 1).
These parameters are then used as inputs for the calculation of ground-state
(g.s.) and γ-band energy levels, carried out with the help of the IBAR [22]
code. In the end, a rescaling of the predicted γ-band energy levels to their
respective experimental bandheads is performed. This is associated with
different mass coefficients, corresponding to varying moments of inertia be-
tween the g.s. and γ bands (see e.g. [23–25]).
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Fig. 1. (Color online) SV-bas EDF potential energy curves (blue/black) versus the
corresponding IBM-1 ones (red/gray) for (a) 180Hf and (b) 182W.
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3. Results and discussion

As it can be seen from Fig. 2, our calculations are in very good agreement
with experimental data for the ground-state band energy levels of 180Hf (a)
and 182W (b), even as one moves on to higher spins (J ≥ 6+1 ). A good
agreement is also observed for the members of the γ bands, formed by the
2+2 , 3+1 , 4+2 , . . . , 9+1 states.
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Fig. 2. (Color online) Experimental (blue/black) versus calculated (red/gray) g.s.
and γ-band energy levels for (a) 180Hf and (b) 182W.

Table 1. Experimental versus calculated B(E2; J → J − 2) values for 180Hf and
182W. Literature data obtained from [26–28].

Isotope Transition B(E2) [W.u.] (Exp.) B(E2) [W.u.] (Th.)
180Hf 2+1 → 0+1 155(2) 183.18

4+1 → 2+1 234+28
−23 260.01

6+1 → 4+1 225(16) 282.60
8+1 → 6+1 245(13) 289.35

182W 2+1 → 0+1 134.6(14) 162.40
4+1 → 2+1 196(10) 229.48
6+1 → 4+1 201(22) 247.63
8+1 → 6+1 209(18) 251.19

In addition to the energy levels, we have calculated the B(E2) transition
strengths for some low-lying states of the ground-state bands of these iso-
topes. To do that, we employed the E2 transition operator, written in the
ECQF formalism as

T̂ (E2) = eBQ̂
χ · Q̂χ , (4)
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where Q̂χ is the quadrupole boson creation operator of Eq. (1), and eB is the
effective charge, determined by equating the intrinsic quadrupole deforma-
tion parameter βt(0

+
1 → 2+1 ) of the IBM-1 model to the βmin

F of the mean-
field PEC (see [7] for more details). The results are tabulated and compared
with available literature data in Table 1, showing reasonable agreement.

4. Summary and outlook

In summary, this contribution presented a sketch of the method detailed
in [7], aiming to introduce triaxiality in the classical limit of IBM-1, using
only one- and two-body terms, by taking advantage of the proxy-SU(3)
approximation to the shell model. This method can provide a quick and easy
tool for the calculation of energy spectra and B(E2) transition strengths
for many medium-heavy and heavy nuclei, extending IBM predictions to
experimentally unexplored regions of the nuclear chart. Current and future
research steps involve its application to neighboring isotopic chains (e.g.
Er, Yb, Os), possibly taking into account the next highest weight irreps of
proxy-SU(3) in the derivation of γs [29, 30].
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