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We explore extensively new, and also long-standing, but still unsolved,
nuclear structure problems by using beyond-mean-field model, Subtracted
Second Random Phase Approximation (SSRPA). Firstly, the similarity be-
tween the subtraction method of SSRPA and Lee–Suzuki similarity trans-
formation is pointed out to get the physical background of the SSRPA
model. Secondly, we study the spin–isospin and electric excitations includ-
ing the couplings to two-particle–two-hole states and the tensor correla-
tions. Our results give a new insight into the quenching the of Gamow–
Teller (GT) sum rule strengths without introducing any adjustable param-
eters in the self-consistent microscopic calculations. We further apply the
SSRPA model to the β decay half-lives of four semi-magic and magic nu-
clei, 34Si, 68,78Ni, and 132Sn. The inclusion of the two-particle–two-hole
(2p–2h) configurations shifts low-lying GT states downwards. It leads to
an increase of the β decay phase space, which ensures the half-lives of the
four nuclei are finite and reduces the β decay half-lives dramatically. The
effect of tensor interaction on the β decay half-life in the SSRPA model is
also pointed out to change largely the half-lives by about one to two orders
of magnitude with respect to the ones obtained without tensor force. The
magnetic dipole transitions are also studied in the SSRPA model.
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1. Introduction

The nuclear spin–isospin excitations are collective oscillations of the nu-
cleus associated with the spin and isospin degree of freedom. They provide
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unique opportunity to study the spin–isospin correlations in nuclei [1, 2].
The GT excitation is the lowest order spin–isospin mode with the multiplic-
ity and parity Jπ = 1+, which has been observed by the charge exchange
reactions, such as (p, n), (3He, t), and vice versa, and closely linked to the
electron capture and β decay rates. The GT excitation has a strong impact
on the r-process of nucleosynthesis together with the photonuclear cross sec-
tions [3]. In addition, the GT resonance is associated with double-β decay
processes, especially for the two-neutrino double-β decay which take places
through two GT-type transitions [4, 5]. The GT transition is related to
the spin–isospin channel of the nucleon–nucleon interaction, and the precise
description of the GT strength distribution is a significant mission for the
microscopic nuclear theories.

The spin–isospin excitations have been discussed in terms of collectivity,
the quenching of sum rule strength, the relation with elementally particle
physics, and astrophysical relations. The main interests are listed as:

— Collectivity of spin and isospin excitations.
— Landau parameters of spin and spin–isospin channels g and g′, which

may imply the possible pion condensations at high nuclear density.
— SU(4) symmetry in light nuclei and the role of isoscalar (T = 0) pair-

ing.
— Damping mechanism due to the configuration mixing.
— Effects of tensor correlations on magnetic dipole (M1) and GT excita-

tions.
— Isobaric analogue state (IAS), charge symmetry breaking (CSB), and

charge independence breaking (CIB) interactions.
— Super-allowed Fermi transitions and their implication on the Cabibbo–

Kobayashi–Maskawa (CKM) unitarity matrix, which has been studied
in the context of beyond Standard Model physics.

— Two-neutrino and neutrinoless double-beta decay.

Theoretically, the shell model and random phase approximation (RPA)
are the models which are widely applied to study the spin–isospin exci-
tations. The shell models are developed in various versions, such as the
large-scale interacting shell model with realistic and phenomenological in-
teractions, the ab initio no core shell model, the ab initio coupled cluster
model, the Gamow shell model, the ab initio Green’s function Monte Carlo
(GFMC) shell model, and the Monte Carlo shell model (MCSM) with intrin-
sic deformed Slater determinants. The RPA models including self-consistent
RPA based on the effective energy density functionals (EDFs), and conven-
tional RPA models based on the realistic or Landau–Migdal interactions.
There are also models beyond RPA:
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— Particle-vibration coupling model (PVC, QPVC).
— Relativistic quasi-particle time blocking approximation (RQTBA).
— Coupled cluster model with singlet and doublet clusters (CCSD).
— Second RPA (SRPA), subtracted SRPA (SSRPA).
— Generator coordinate method (GCM).

In this manuscript I just report our researches of SSRPA due to the
limitation of available pages.

2. Subtracted SRPA (SSRPA)

In this section, we briefly display the main formalism of SSRPA. More
details can be found in several articles (see, for instance, Refs. [6, 7]). In
the SRPA model, the excitation operator Q†

ν is given by

Q†
ν =

∑
ph

(
Xν

pha
†
pah − Y ν

pha
†
hap

)
+

∑
p1<p2
h1<h2

(
Xν

p1p2h1h2
a†p1a

†
p2ah2ah1 − Y ν

p1p2h1h2
a†h1

a†h2
ap2ap1

)
. (1)

The subscripts p, p1, p2 denote particle states, while h, h1, h2 are hole states.
X and Y are forward and backward amplitudes. The SRPA equation has
the same matrix form as that of the RPA equation[

A B
−B∗ −A∗

] [
Xν

Y ν

]
= ℏων

[
Xν

Y ν

]
, (2)

where A and B are matrices with double structure and X and Y are two
column vectors

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, X =

(
Xν

1
Xν

2

)
, Y =

(
Y ν
1

Y ν
2

)
.

(3)

The indices 1 and 2 are abbreviations for the 1p–1h and 2p–2h configurations,
respectively. The matrix elements of Eq. (3) are expressed as

A11 = Aph;p′h′ = ⟨HF |
[
a†hap,

[
H, a†p′ah′

]]
|HF ⟩

= (Ep − Eh)δpp′δhh′ + V̄ph′hp′ , (4)
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B11 = Bph;p′h′ = −⟨HF |
[
a†hap,

[
H, a†h′ap′

]]
|HF ⟩ = V̄pp′hh′ , (5)

A12 = Aph;p1p2h1h2 = ⟨HF |
[
a†hap,

[
H, a†p1a

†
p2ah2ah1

]]
|HF ⟩ , (6)

A22 = Ap1p2h1h2;p′1p
′
2h

′
1h

′
2
= ⟨HF |

[
a†h1

a†h2
ap2ap1 ,

[
H, a†

p′1
a†
p′2
ah′

2
ah′

1

]]
|HF ⟩ ,

(7)

where Ep and Eh are the HF particle and hole energies, respectively, and V̄
is the residual interaction. The quasi-boson approximation (QBA) is used
in the derivation of matrix elements, and it turns out that B12, B21, and
B22 have no contributions to the SRPA matrices.

It is well-known that the SRPA has a convergence problem; a larger
model space makes a lower energy spectrum than the physical energy region.
To cure this problem, the subtraction method was proposed. This procedure
will start from the convolution of the 2p–2h model space into the 1p–1h
model space. Then we get the energy-dependent matrices A and B for the
1p–1h model space as

A11′(ω) = A11′ +
∑
2

A12(ω + iη −A22)
−1A21′

+
∑
2

B12(ω + iη −A22)
−1B21′ ,

B11′(ω) = B11′ +
∑
2

A12(ω + iη −A22)
−1B21′

+
∑
2

B12(ω + iη −A22)
−1A21′ . (8)

Two additional terms are ω-dependent and will induce non-convergence of
SRPA because A11′(ω) and B11′(ω) for the 1p–1h model space depend on the
size of the 2p–2h model space and, consequently, the SRPA solutions also
depend on the model space. To cure this problem, the A and B matrices in
the SRPA (2) are modified as

AS
11′ = A11′ +

∑
2

A12(A22)
−1A21′ +

∑
2

B12(A22)
−1B21′ ,

BS
11′ = B11′ +

∑
2

A12(A22)
−1B21′ +

∑
2

B12(A22)
−1A21′ . (9)

Notice that the extra terms in Eq. (9) cancel exactly with the additional
terms in Eq. (8) in the static limit ω → 0. This subtraction method is un-
avoidable since EDF was constructed originally to reproduce nuclear struc-
ture observables in the mean-field levels such as HF and RPA.
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2.1. Lee–Suzuki similarity transformation and SSRPA

The coupled cluster model with singlet and doublet pairs (CCSD) is a
similar approach to SRPA to include 2p–2h configurations on top of 1p–1h
configurations. The essential difference is that the interaction is renormal-
ized according to the size of the model space by using a similarity trans-
formation (Lee–Suzuki) or the similarity renormalization group (SRG) tech-
nique [8]. According to the Lee–Suzuki method, we start from a many-body
system which is described by the Schrödinger equation

H|Ψ⟩ = E|Ψ⟩ (10)

with the ab initio Hamiltonian

H = H0 + V , (11)

where H0 is the one-body Hamiltonian, V is the residual interaction, and
|Ψ⟩ is the exact wave function and E is the exact eigenvalue. In standard
interacting shell models, the full model space is separated into two parts:
active space denoted P space, and the inactive space called Q space. We
define the projection operators P and Q, which project out each space, and
satisfy

P +Q = 1 , PQ = 0 . (12)

In the mean-field model, we define the P space as the 1p–1h model space
and Q space as mp–mh states with m = 2, 3, . . . The operators P and Q
satisfy the commutation relations with H0

[P,H0] = [Q,H0] = 0 , (13)

and are called eigenprojectors. Consequently, we can obtain

PH0Q = QH0P = 0 . (14)

The objective of the Lee–Suzuki is to construct an effective Hamiltonian
Heff from the full Hamiltonian H, which acts only in the P space and sat-
isfies the condition that any eigenvalue of Heff should be one of the exact
eigenvalues of the full Hamiltonian H. A general equation for determining
Heff can be derived by the use of the similarity transformation theory. We
consider a similarity transformation of the Hamiltonian H

H = X−1HX , (15)

where X is a transformation operator which is defined in the entire Hilbert
space. The operator X is not unitary, but has its inverse X−1. The trans-
formed Hamiltonian H is decomposed into four terms

H = (P +Q)H(P +Q) = PHP +QHP + PHQ+QHQ . (16)
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To drive the effective Hamiltonian,

Heff = PHP = P
(
X−1HX

)
P (17)

from Eq. (16), we require a condition

QHP = Q
(
X−1HX

)
P = 0 . (18)

Equation (18) provides the necessary and sufficient condition for the determi-
nation of Heff , which has the eigenstate in P space corresponding to exactly
one of the exact eigenstates of the full Hamiltonian H. We can prove this
statement by the similarity transformation theory in the eigenvalue problem.
If X is a solution of Eq. (18), Heff in Eq. (17) satisfies

Heff |ϕ⟩ = H|ϕ⟩ (19)

for any state ϕ in the P space so that Heff is equivalent to H in the P space.
Therefore, the eigenvalue of Heff becomes also the eigenvalue of H. This
means that the eigenvalue of Heff agrees with one of the eigenvalues of the
full Hamiltonian H because the similarity transformation does not change
the eigenvalues.

The operator X is conveniently expressed as

X = eω , (20)

where the operator ω has properties

ω = QωP ̸= 0 , PωP = QωQ = PωQ = 0 (21)

since ω is introduced to act as transformation from the P space to the Q
space. From the properties of Eq. (21), Eq. (20) is simplified to

X = 1 + ω , (22)

since ω2 = ω3 = · · · = 0.
The effective Hamiltonian is rewritten to be

Heff = PHP = PHP + PV Qω , (23)

by using the properties of the operator ω. Then the effective interaction is
given by

Veff = Heff − PH0P = PV P + PV Qω . (24)

The Hamiltonian Heff has the eigenvalue Ei and the corresponding eigenstate
|ϕi⟩ as

Heff |ϕi⟩ = (PH0P + Veff)|ϕi⟩ = Ei|ϕi⟩ , (25)

and the operator ω is expressed as [8]
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ω =
d∑
i

ω(Ei)|ϕi⟩⟨ϕi| , with ω(Ei) =
1

Ei −QHQ
QV P , (26)

where d is the dimension of the P space. Eventually, the effective interaction
of the P space is expressed as

Veff = PV P +

d∑
i

PV Q
1

Ei −QHQ
QV P |ϕi⟩⟨ϕi| . (27)

The eigenstate of full model space is also expressed as

|Ψi⟩ = eω|ϕi⟩ = |ϕi⟩+ ω(Ei)|ϕi⟩ . (28)

Notice that the eigenenergy of the P space Ei is the same as that of full
space eigenstate |Ψi⟩.

The similarity transformation provides the renormalization term in Veff

in Eq. (27), which is exactly the same functional form as the subtraction
term in SSRPA. Since EDF and the effective Lagrangian include the renor-
malization term from the beginning, it is physically justified to subtract the
corresponding term if one expands the model space from the P space to the
P+Q space. The adiabatic limit ω → 0 should be also reasonable since EDF
is optimized for the data set of nuclear ground state and nuclear matter.

2.2. Convergence of SSRPA

For the present HF+SSRPA model, numerical details are found else-
where [7, 9, 10]. The IS 0+ strength distribution of 16O calculated with
SGII are shown in Fig. 1. All the discrete results are smoothed with the
Lorentzian function having 1 MeV width. In the upper panel, the SSRPAD

calculations are performed with the 2p–2h energy cutoff Ecut = 60, 70, and
80 MeV taking only the diagonal matrix elements of A22 in the subtraction
procedure. One can find a good convergence of the strength distribution in
the energy region lower than 20 MeV, and a reasonable convergence in the
higher-energy region. The lower panel shows the strength distributions ob-
tained by the SSRPAD and SSRPAF calculations with the energy cutoff of
60 MeV. All the matrix elements between 2p–2h configurations are included
in SSRPAF . We can see that the simplification in SSRPAD calculations
causes only a small effect. However, we adopt full calculations SSRPAF for
the latter M1, GT states, and also β decay study, so as to obtain more
precise results.

We checked the isoscalar 0+ and 2+ energy moments m1 and m−1 ob-
tained by RPA and SSRPA calculations with the SGII interaction. As
was already reported in Ref. [6], the m1 moments are not conserved in the
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SSRPA calculations compared to RPA, due to the subtraction procedure,
while the m−1 moments are conserved by the SSRPAF , being almost identi-
cal to the RPA ones. The conservation of m−1 moments was slightly broken
in SSRPAD calculations by the diagonalization approximation.
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Fig. 1. (Color online) IS 0+ strength distributions for 16O calculated by SSRPAD

calculations by SGII interaction with the 2p–2h energy cutoff Ecut = 60, 70, and
80 MeV (upper panel), and by SSRPAD and SSRPAF calculations at Ecut =

60 MeV (lower panel). See the text for more details.

3. Application of SSRPA for spin–isospin modes

We applied SSRPA for the spin–isospin excitations and β decay. In this
contribution, we present results of magnetic dipole transitions (M1) and β
decays of semi-magic nuclei.

3.1. Magnetic dipole transition in 48Ca

We first investigate the role of tensor interactions on the HF p–h ex-
citations energies and RPA correlation [9]. We tabulate the unperturbed
p–h and RPA M1 excitation energies of SGII-T and SAMi-T without and
with the tensor interactions for 48Ca in Table 1. The tensor part of SAMi-T
was determined guided by the ab initio relativistic Brueckner–Hartree–Fock
(RBHF) studies on neutron–proton drops [11], and the beta decay half-lives
in semi-magic nuclei by SSRPA calculations [9]. The dominant p–h con-
figuration is (1f7/2 → 1f5/2)ν for 48Ca so that the orbital operator has no
contribution to the M1 strength. The M1 operator reads

Ô(M1) =
∑
i

(gs(i)si + gl(i)li) , (29)
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where gs(i) (gl(i)) is the spin (orbital) g factor given by gs(p) = 5.586 (gl(p) =
1.0) for protons and gs(n) = −3.826 (gl(n) = 0.0) for neutrons, respectively,
in a unit of nuclear magneton µN . In the HF level, the triplet-odd term
U acts uniquely on the energy splitting of neutron spin–orbit partners [12].
The large negative U value increases the spin–orbit splitting of similar par-
ticles so that the tensor interaction of SGII+T having a larger negative U
gives much larger spin–orbit splitting compared with that of SAMi-T as is
seen in Table 1. The strong triplet-odd term U affects also largely on the
RPA correlations pushing upwards the excitation energies of M1 states in
48Ca [9].

Table 1. The excitation energy of 1+ state in 48Ca. The energy is calculated with
SGII+(T,U) = (500,−280) and SAMi-T,(T,U) = (415.5,−91.4) without and with
tensor terms. ∆ET is the difference of energies between with and without the
tensor interaction, while ∆E(RPA-HF) (∆E(SSRPA-HF) is the difference between
RPA (SSRPA) and HF energies. The experimental excitation energy is 10.23 MeV.
The unit is in MeV. See the text for details.

SGII HF RPA ∆E(RPA-HF) SSRPA ∆E(SSRPA-HF)
w/o 6.44 8.90 2.46 7.34 0.90
with 9.25 11.35 2.10 9.05 −0.20

∆ET 2.81 2.45 1.71
SAMi-T HF RPA ∆E(RPA-HF) SSRPA ∆E(SSRPA-HF)

w/o 6.18 8.61 2.43 7.88 1.70
with 7.01 9.40 2.39 8.34 1.33
∆ET 0.83 0.46 −0.37

Figure 2 shows the strength distributions and corresponding cumulative
sums of the M1 resonance in 48Ca calculated by RPA and SSRPA with
SGII+T including tensor terms or not. The cumulative sums of B(M1)
are counted up to Emax = 15 MeV. The effects of the 2p–2h configuration
mixings in SSRPA are clear in this figure. The RPA calculations either with
or without tensor terms produce the main peak with a strength larger than
10µ2

N , which is more than two times larger than the experiment data. In
SSRPA calculations, the M1 strengths are reduced largely, and the strength
of the main peak (≃ 4.09 µ2

N ) becomes almost the same as the experimental
one (≃ 4.0 µ2

N ). Besides the main peak, some states with small strength
are distributed around the main peak in SSRPA. The tensor terms shift the
main peak energy upwards by about 1.7 MeV in SSRPA, which is still about
1 MeV lower than the experimental one. Figure 2 (d) indicates that the
cumulative sum of B(M1) up to 15 MeV is reduced by more than 15% by
the tensor correlations.
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Fig. 2. (Color online) Strength distributions (left panels) and corresponding cumu-
lative sums (right panels) of M1 excitations in 48Ca calculated with the SGII,
SGII+T(500,−280) EDFs by RPA (upper panels) and SSRPA (lower panels).
The results obtained by SGII and SGII+T(500,−280) are shown by red/gray and
blue/dark gray lines, respectively. The experimental data [13] are shown by the
black lines. See the text for details.

Experimentally, the B(M1) strength of 48Ca is dominantly measured at
Ex = 10.2 MeV [13–17]. The measured total B(M1) strengths in several
experiments are shown with the calculated results with different EDFs by
RPA and SSRPA in Fig. 3. One can find that the calculated strengths
by SSRPA are much smaller than those of RPA. It is seen that the tensor
terms of SAMi-T give a small effect on the summed strength, while those of
SGII+T(500,−280) and SGII+Te1(500,−350) reduce the summed strength
by more than 10%, and provide tresults close to the (γ, n) experimental
data.

3.2. β-decay lifetime

The GT-type β-decay half-life can be calculated using a formula [18]

T1/2 =
D

g2A
∑

nB
GT−

1+n
f0(Z,A, ωn)

, (30)

where D = 6163.4 ± 3.8 s, gA ≡ GA/GV = 1.26 is the ratio of the axial-
vector to vector coupling constants, BGT−

1+n
is the Gamow–Teller strength of

nth excited state with the energy ωn referred to as the ground state of the
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Fig. 3. (Color online) The cumulative sums of B(M1) strength up to Ex = 15 MeV
in 48Ca calculated by RPA (empty symbols) and SSRPA (filled symbols) with SGII,
SGII+T(T = 500, U = −280), SGII+Te1(T = 500, T = −350), SAMi, SAMi-T
EDFs, with or without tensor force. The results obtained by SGII, SGII+T, and
SGII+Te1 are shown by red/gray, blue/dark gray, and green/light gray circles,
respectively. The results obtained by SAMi, SAMi-T(T = 415.45, U = −95.53)

without or with tensor force are shown by red/gray, blue/dark gray, and green/light
gray squares, respectively. The experimental data [13–17] are shown by the black
squares with error bars.

mother nucleus. The Gamow–Teller operator is defined as operator

Ô−(GT) =
∑
i

t−(i)σ(i) . (31)

The factor f0(Z,A, ωn) is the integrated phase factor at the energy ωn. The
value gA is usually set to lower than 1.26 assuming a quenching factor which
is closely related to the GT sum rule deficiency [19]. In this work, the value
gA is set to be gA = 1.0 [10]. This value is consistent with the quenching
factor in our previous work on the study of GT transition strengths by the
SSRPA model [7]. We study the effect of the 2p–2h correlations on the
β-decay half-live of the four semi-magic and magic nuclei 132Sn, 68Ni, 34Si,
and 78Ni. Figure 4 shows the β-decay half-lives calculated by the RPA and
SSRPA models, in comparisons with experimental values. The RPA results
largely overestimate the half-lives for almost all nuclei. For example, 132Sn
has an infinite lifetime in RPA calculations of all EDFs. On the other hand,
the half-lives of all nuclei calculated with SSRPA become finite values, and
agreement with the experimental values are much improved. In Fig. 4, the
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SSRPA results of SLy5 and SkM∗ EDFs give better agreement of the half-
lives than the other EFDs. Similar improvements in β-decay descriptions
were obtained by the RPA+PVC calculations [20].
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Fig. 4. (Color online) The β decay half-lives of 132Sn, 68Ni, 34Si, and 78Ni calcu-
lated by RPA and SSRPA models, respectively, in comparisons with experimental
values [21]. The red/gray solid circles and the blue/dark gray solid squares repre-
sent results obtained by RPA and SSRPA respectively. The experimental data are
shown by the black empty circles. The RPA results are infinite in some nuclei and
not shown in the figure.

Figure 5 shows the β-decay half-lives calculated by RPA and SSRPA
with SGII, SGII+T(500,−280). The tensor terms reduce the half-lives in
34Si and 78Ni largely on the RPA level, but cannot give finite lifetimes for
68Ni and 132Sn. The effects of including 2p–2h configurations in SSRPA
with SGII reduce the β-decay half-lives in 78Ni and 34Si by two orders of
magnitude, and give finite half-lives for 132Sn and 68Ni. The effect of tensor
force in SSRPA calculations is clearly observed in 68Ni, where the tensor
force reduces the half-live by two orders of magnitude, while the tensor force
shows a minor effect on the half-life.
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Fig. 5. (Color online) The β-decay half-lives of 132Sn, 68Ni, 34Si, and 78Ni calculated
by RPA and SSRPA with SGII including or excluding tensor terms in comparison
with the experimental values [21]. Six different EDFs are employed to study the
model dependence of calculated results. The red/gray and dark green/dark gray
filled circles represent results obtained by RPA with SGII and SGII+T, respec-
tively, labeled “SGII-RPA” and “SGII+T-RPA”. The green/light gray filled squares
represent SSRPA results with SGII. The blue/dark gray open squares represent
SSRPA results with SGII+T. The experimental data are shown by the black open
circles.

4. Summary

We first discuss the similarity between the subtraction procedure SSRPA
and the similarity transformation by the Lee–Suzuki method for beyond
mean field calculations. Namely, the subtracted matrix elements of SSRPA
from the 1p–1h model space correspond to the renormalization terms from
the Q space to the effective interaction of the P space. This similarity may
justify the subtraction procedure of SSRPA. The convergence of the SSRPA
model is checked for the calculations of the natural parity excitations 0+

and 2+ states in 16O and 40Ca, changing the model space. We found good
convergence for the excited spectra up to Ex = 30 MeV and also the inverse
energy weighted sum rule value.

We applied the SSRPA model to describe the magnetic dipole states,
Gamow–Teller states, and β decays. It is pointed out the quenching of M1
and GT states are largely explained by the couplings to 2p–2h states. On
top of that, the tensor interaction contributes 5–10% effect to induce further
the quenching effect. The β-decay life-times of semi-magic and magic nuclei
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were also studied in the SSRPA model and a large improvement of the
lifetime predictions is found in these nuclei compared with the standard
RPA calculations.
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