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The generator coordinate method (GCM) is a well-known method to
describe nuclear collective motions. In this method, one needs to specify
a priori the relevant collective degrees of freedom as input of the method,
based on empirical and/or phenomenological assumptions. Recently, we
extended the GCM to include simultaneous optimization of both the basis
Slater determinants and the weight factors based on the variational princi-
ple. This extension allows for the automatic optimization of the collective
subspace. In this study, we apply the extended GCM to analyze 20Ne using
the Skyrme interaction. We demonstrate that the optimized basis states
correspond to excited states along a collective path, in contrast to the con-
ventional GCM, which typically superposes only local ground states. We
further calculate the low-lying excited states with the angular momentum
projection and discuss the capabilities of the extended method.
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1. Introduction

Developing a theory for the microscopic description of collective motion
is one of the major goals of nuclear many-body problems. In particular,
there are several phenomena in nuclear systems, such as shape coexistence
phenomena and nuclear fission, in which large-amplitude collective motion
is crucial. The generator coordinate method (GCM) has been widely used
to describe collective motions including large-amplitude motions.

∗ Presented at the 57th Zakopane Conference on Nuclear Physics, Extremes of the
Nuclear Landscape, Zakopane, Poland, 25 August–1 September, 2024.

(2-A43.1)

https://www.actaphys.uj.edu.pl/findarticle?series=sup&vol=18&aid=2-A43


2-A43.2 M. Matsumoto, Y. Tanimura, K. Hagino

A trial wave function of GCM is given by a superposition of basis Slater
determinants (SDs). The basis states are parametrized by appropriate col-
lective coordinates to describe the dynamics of the system. In practice,
the local ground states along selected collective coordinates are generated
by the constrained Hartree–Fock (CHF) method. Then, a set of weights is
determined based on the variational principle.

However, there is a serious problem of GCM that collective coordi-
nates must be selected based on empirical or phenomenological assump-
tions. There is no guarantee that the commonly used collective coordinates
are sufficient to describe the ground state of a given nucleus. Therefore, it
is necessary to develop a theory that does not rely on the empirical deter-
mination of collective coordinates and that describes the collective motion
non-empirically.

Recently, we have proposed a method based on GCM with basis opti-
mization [1, 2]. Such an extension allows us to obtain an optimal collec-
tive space. Similar attempts have been made with the Monte Carlo shell
model [3] and more recently with anti-symmetrized molecular dynamics [4].
We have studied the intrinsic ground states of the sd-shell region using
Skyrme interactions in our previous work [1]. In this work, as the next step,
we analyze the low-lying excited states of 20Ne.

2. Method

We optimize the basis for the intrinsic ground states using the method
proposed in [1]. We call this method the optimized-basis GCM (OptGCM).
The trial function is given by

|Ψ⟩ =
M∑
a=1

fa|Φa⟩ , (1)

where |Φa⟩ are the basis Slater determinants, which are given by anti-
symmetrized product of N orthonormal single-particle orbitals φ

(a)
i (i =

1, . . . , N).
The total energy to be minimized is given by

E =
⟨Ψ |H|Ψ⟩
⟨Ψ |Ψ⟩

=

∑
ab f

∗
afbHab∑

ab f
∗
afbNab

, (2)

where Nab and Hab are the norm and the Hamiltonian kernels, respectively,

Nab = ⟨Φa|Φb⟩ , (3)
Hab = ⟨Φa|H|Φb⟩ . (4)
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The total energy E should be stationary under an arbitrary variation of the
variational parameters fa and φ

(a)
i . We take the variation of E with respect

to φ
(a)
i and weight function fa using the conjugate gradient method [5].
In this work, the initial set of SDs for the conjugate gradient iterations

is prepared by Woods–Saxon potentials with different deformations, and the
initial values of the weight factors are set as fa = 1 for all a. For the
energy density functional, we adopt the SIII parameter set of the Skyrme
functional [6]. We assume axial and reflection symmetries and omit the time-
odd terms of the functional for simplicity. The pairing correlation is also
neglected. The single-particle states are expanded on the axial harmonic-
oscillator basis [7]. We take 14 major shells of harmonic-oscillators and 10
basis SDs.

After the optimum set of the basis and the weight factors are obtained,
we perform the angular momentum projection to restore the rotational sym-
metry and obtain low-lying excited states. The weights are re-determined
by GCM after projection for each angular momentum. For comparison, we
also perform GCM calculations with quadrupole moments Q2 as the col-
lective coordinates. That is, the basis obtained by the CHF method with
constraints on Q2 is superposed, and the weights are determined by GCM
after the angular momentum projection.

3. Results and discussions

Figure 1 (a) shows the bases obtained by basis optimization for the in-
trinsic ground states. It also includes the potential energy curve calculated
by CHF. Note that for the CHF, a level crossing takes place near Q2 = 0 in
20Ne, and the CHF does not converge near that point. Therefore, the calcu-
lation is performed up to the smallest Q2 possible to be calculated. As we
show for the cases of 16O and 28Si in [1], the optimized bases correspond to
excited states along a collective path. This result implies that one needs to
take into account excitations of nuclei in determining a collective coordinate.

Figures 1 (d) and (e) show neutron-density distributions obtained by
CHF and OptGCM, respectively. With the OptGCM, a variety of shapes
are obtained for the bases that cannot be obtained with the Q2-CHF. This
indicates that a wider collective subspace and nontrivial fluctuation in higher
moments can be obtained by optimizing the basis. Using the basis shown
here, the calculation of physical quantities, such as the energy by the angular
momentum projection, is carried out.

Figure 1 (b) shows the calculated and observed rotational bands of 20Ne
obtained with the HF, GCM, and OptGCM. The experimental results are
taken from [8]. The energies of the 0+, 2+, 4+, and 6+ states are lowered, as
compared to those in HF, by the configuration mixing in GCM and further by
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the mixing of the optimized bases in OptGCM. According to the variational
principle, the OptGCM results are better than those of GCM and HF for
the given Hamiltonian. For the 8+ state, GCM gives the lowest energy,
reversing the results for GCM and OptGCM. It is reasonable that OptGCM
cannot reproduce well the structure of the spectrum for the higher states,
since the basis in OptGCM is optimized for the intrinsic ground state in this
calculation. Optimization of the basis states after the angular momentum
projection would improve the results for the excited states as well as the
ground state.

Figure 1 (c) shows the B(E2) values obtained with HF, GCM, and Opt-
GCM. The experimental values are also presented [8]. The results for GCM
and OptGCM are in better agreement with the experimental values than
those of HF. In particular, the decrease in B(E2; 6+ → 4+) and B(E2; 8+ →
6+) is better reproduced by GCM and OptGCM.

Fig. 1. (a) Expectation value of the Hamiltonian Haa as a function of the expecta-
tion value of Q2 for each SD. (b) Energy spectra of 20Ne calculated with AMP. The
experimental data is taken from [8]. (c) Observed and calculated B(E2) strengths
of 20Ne. The experimental data is taken from [8]. (d) Neutron density distribution
of each SD obtained with CHF. (e) The same as (d), but with OptGCM.

4. Conclusion

We obtained the optimal collective subspace for the intrinsic ground state
of 20Ne using OptGCM, which we recently proposed. From information
of the obtained basis, it is expected that one needs to take into account
excitations of nuclei in determining collective coordinates. It was shown
that the fluctuations of higher multipole moments could also contribute to
the ground-state correlations.
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In addition, we calculated the low-lying excited states from the obtained
basis with the angular momentum projection. The energies of the ground-
state rotational band and B(E2) value were discussed. For the 0+, 2+, 4+,
and 6+ states, whose excitation energies are approximately 10 MeV or less,
the OptGCM calculations show lower energies than the GCM calculations
with the Q2 taken as the generator coordinate. The B(E2) calculated by
OptGCM and GCM was in good agreement with the experimental values.

To extend the applicability of OptGCM to a broader range of collective
excitations, it is crucial to perform basis optimization after angular momen-
tum projection [3]. It would enlarge the applicability of OptGCM to the
analysis of large-amplitude collective motions, such as shape coexistence.
Another interesting future work is to employ OptGCM to determine col-
lective paths in various nuclei and compare the results with those obtained
from other existing approaches to collective motion, such as the dynamical
GCM [9, 10].
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