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We discuss the GUDE functionals which consist of pion exchanges de-
rived from chiral effective field theory and a Skyrme-like part. Certain pion
terms lead to significant improvements in the description of ground-state
energies, indicating they might be useful ingredients for true ab initio en-
ergy density functionals. In addition, we present estimates of the statistical
parameter uncertainties of the GUDE functionals.
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1. Introduction

Nuclear energy density functionals (EDFs) [1, 2] constitute an approach
to the nuclear many-body problem that occupies a middle ground between
more phenomenological approaches, such as the semi-empirical mass for-
mula, and more microscopic ones, such as the so-called ab initio approaches.
This holds both in terms of computational complexity and in terms of re-
solved degrees of freedom. As EDFs constitute a mean-field method, they
possess mild computational scaling with the mass number. Hence, they can
be employed for computing observables throughout the entire nuclear chart
(with the exception of the very lightest nuclei for which a mean-field approx-
imation is poorly justified). In addition, EDFs are at the moment generally
able to achieve more accurate results than ab initio methods.

However, the successful description of experiment is, at least in part,
a consequence of the phenomenological construction of the employed func-
tional forms, in which parameters are obtained by fitting to experimental
results over a wide mass range. The empirical nature of EDFs makes extrap-
olations outside the fitting regions, as they are needed e.g. for astrophysical
applications, potentially uncontrolled [3, 4]. For similar reasons, it is difficult
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to assess model uncertainties, which would be needed for a full understand-
ing of the predictive capabilities of different functionals. Additionally, it is
believed that further improvements in EDF accuracy will hardly be obtained
just from more and more sophisticated parameter optimization protocols and
new forms of the employed functionals are called for [5]. This article deals
with one approach for obtaining new EDF forms by making connections to
chiral effective field theory (EFT).

2. Quest for energy density functionals from first principles

Ab initio methods promise to overcome several problems of nuclear EDFs.
This is because they are based on systematically improvable interactions ob-
tained from chiral EFT, which is rooted in quantum chromodynamics. Their
systematical construction allows for a natural way of estimating interaction
uncertainties. Similarly, the many-body problem is solved with systemati-
cally improvable correlation expansion methods such as many-body pertur-
bation theory or the coupled cluster method (CC). These many-body meth-
ods treat correlations of particle–hole type, which in the EDF approach are
generally assumed to be implicitly accounted for by the effective nature of the
employed functionals, explicitly. Therefore, such ab initio calculations are
computationally much more expensive than mean-field calculations. Hence,
it is of interest to meaningfully connect nuclear EDFs and the ab initio ap-
proach (see, for instance, the parallel drawn in Ref. [6]).

Different strategies have been pursued to this end such as fitting the
form of EDF volume terms to equations of state obtained from ab initio
calculations of infinite nuclear matter (INM) [7]. In addition, fitting to other
ab initio pseudodata has also been considered, e.g., to energies of neutron
drops [8]. There are also ideas for obtaining EDFs fully from first principles
in the form of effective actions, for instance, in path-integral approaches.
While this constitutes the most fundamental of the research lines mentioned
here, there are still many steps to be taken until a fully microscopic nuclear
EDF will be constructed [9].

In this article, we report on findings obtained following a different route,
which was first suggested in Refs. [10, 11]. We concentrate here on the
results obtained in the newest work [12] (see references therein for previous
steps), in which we constructed the GUDE1 family of functionals, which
can be regarded as semi-phenomenological or hybrid functionals. They are
obtained by complementing conventional Skyrme-type contact terms with
terms arising from pion exchanges as described by chiral EFT at the Hartree–
Fock level.

1 Germany–USA Density-matrix expansion Energy density functionals.
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This strategy can be motivated in two ways. First, we note that ab initio
calculations in heavy systems typically proceed by solving a Hamiltonian
obtained from chiral EFT on the mean-field level. Then, correlations are
built on top of this solution via a correlation expansion method. Instead of
explicitly generating correlations by the many-body method, our approach
can be viewed as an adjustment of the short-range part of the potential
reflecting the fact that dominant bulk correlations in nuclei appear to be of
a short-range nature. This is similar in spirit to attempts of encapsulating
the effect of triple correlations in the coupled-cluster approach into CCSD by
adjusting the three-nucleon contact interaction [13]. Second, conventional
Skyrme EDFs correspond largely to effective contact interactions solved at
the mean-field level. When increasing the resolution of the description of the
considered systems, the first additional degree of freedom that is resolved
are exchanges of the lightest mesons, the pions, as described by chiral EFT.
Hence, including them explicitly can be expected to lead to a more accurate
description of nuclei.

3. Construction and optimization of GUDE functionals

We now proceed with outlining the form of functionals in the GUDE
family as well as the parameter optimization. Here, we restrict ourselves
to the most important points and refer the reader to Ref. [12] for details
regarding implementation and optimization protocol.

The functionals, which are solved at the Hartree–Fock–Bogoliubov level,
consist of six parts

E = Eχ
H + Eχ

F + ESkyrme + ECoulomb + Epair + Ekin , (1)

which can be separated into a conventional Skyrme-like structure (the lat-
ter four terms) and long-range contributions from pion exchanges (the first
two). The pion exchanges are taken from chiral EFT and are considered at
the Hartree–Fock level. The different functionals within the GUDE family
differ by which pion-exchange terms are included. We consider terms at
different orders in the chiral expansion up to next-to-next-to-leading order
(N2LO). At each order, we construct functionals with and without the ex-
plicit inclusion of intermediate ∆ isobars as well as with and without the
inclusion of 3N forces. In total, this yields eight GUDE variants: LO, NLO,
N2LO, N2LO+3N, NLO∆, NLO∆+3N, N2LO∆, N2LO∆+3N. Note that
the pion exchanges go beyond the simple Yukawa-type one-pion exchange
which appears at LO in the chiral expansion.
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For the Hartree terms Eχ
H, the potentials are approximated by sums of

Gaussians which allows a simpler implementation into existing EDF codes
since they are often already capable of treating such terms because they
occur in the widely used family of Gogny functionals. Fock contributions
Eχ

F are included in quasi-local form. This is achieved by using a density-
matrix expansion (DME) to approximate the one-body density matrix in
terms of quasi-local densities and leads for the NN forces schematically to

Eχ
F,NN =

∑
t=0,1

∫
dR

{
gρρt (ρ0)ρ

2
t + gρτt (ρ0)ρtτt + gρ∆ρ

t (ρ0)ρt∆ρt

+gJJ,2t (ρ0)Jt,abJt,ab + gJJ,1t (ρ0)[Jt,aaJt,bb + Jt,abJt,ba]
}
, (2)

where, unlike for contact interactions, all the g coefficients are functions
of the isoscalar density ρ0. In Eq. (2), we suppressed the dependence of
the various (quasi-)local densities on R, and t = 0 (t = 1) labels isoscalar
(isovector) quantities. The DME is in particular a suitable strategy to make
the inclusion of 3N interactions computationally feasible. In this case, one
obtains a similar (but longer) equation to Eq. (2), with density trilinears
instead of bilinears.

In addition to the different chiral terms, we include for all GUDE variants
a Skyrme part,

ESkyrme =
∑
t=0,1

∫
dR

[(
Cρρ
t0 + Cρρ

tDρ
γ
0

)
ρ2t + Cρτ

t ρtτt + Cρ∆ρ
t ρt∆ρt

+Cρ∇J
t ρt∇ · J t + CJJ

t Jt,abJt,ab
]
, (3)

in addition to a Coulomb contribution ECoulomb and the kinetic energy Ekin.
Nuclear superfluidity is described by a contact mixed-pairing term Epair.

For every GUDE variant, we fit the parameters that appear in ESkyrme
after adding the pion exchanges. Note that we take the pion exchanges as
they are from chiral EFT, where the low-energy constants are fitted to pion–
nucleon scattering data [14]. Therefore, they are free of parameters to be
adjusted in the many-body sector. We fix the poorly constrained isovector
effective mass at its SLy4 value, which leaves nx = 14 Skyrme parameters
to be optimized for each GUDE variant.

The parameters x are optimized by minimizing a loss function

χ2(x) = ∥R(x)∥2 (4)

with R(x) being an nd-dimensional vector, whose components

Ri(x) =
si(x)− di

wi
(5)
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are weighted residuals of the EDF predictions si(x) and experimental data di.
It consists of nd = 121 data points for 81 even–even nuclei ranging from 40Ca
to 264Hs, namely binding energies, charge radii, odd–even mass staggerings,
and fission isomer excitation energies. The data set is similar to the one
used in Refs. [15, 16]. The weights wi are taken from a Bayesian calibra-
tion of the UNEDF1 functional [17]. To ensure that the GUDE functionals
provide a reasonable description of infinite nuclear matter, we perform the
optimizations with bounds on INM parameters, which are constrained to
a physically plausible region.

Note that in addition to the eight GUDE variants including pion ex-
changes up to different orders, we also construct an EDF without any chiral
terms, but following the same optimization protocol. This Skyrme func-
tional, which we call “no chiral”, serves as our reference functional, to which
we compare the other GUDE variants. A tenth GUDE variant is obtained
by including only the chiral contributions which we find to significantly in-
fluence the performance of the GUDE functionals, see Section 5. We refer
to this functional as the “min. chiral” variant.

4. GUDE parametrizations and uncertainties

In Table 1, we provide the obtained EDF parameters for the “no chiral”
and “min. chiral” functionals, where EDF volume parameters have been ex-
pressed in terms of INM properties. For the other parametrizations, we refer
the reader to Ref. [12].

We want to focus here on the calculation of statistical uncertainty esti-
mates of the different parameters. We obtain these estimates by computing
a first-order approximation to the covariance matrix V based on the loss
function with its minimum at x

V ≈ χ2(x)

nd − nx

(
J(x)TJ(x)

)−1
. (6)

The Jacobian J(x) is obtained from

J(x)T = ∇⊗R(x) , (7)

and parameter standard deviations σ are then given by the square roots of
the diagonal elements of V . Equation (6) constitutes a well-known method to
approximate covariance matrices in the field of non-linear regression [18, 19],
and has been employed for instance in the context of optimizing Fayans [20]
and the UNEDF [15, 21] functionals. This notion of a covariance matrix
assumes that Eq. (6) is evaluated at a point x, where χ2(x) has a true
minimum (in the sense that it can be locally approximated by a quadratic
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Table 1. Parameters of two GUDE variants and associated standard deviations
given in the form of statistical uncertainties x(σ).

no chiral min. chiral
ρc [fm−3] 0.1546(4) 0.1583(9)
Esat [MeV] −15.8 −15.830(17)

K [MeV] 260 224(7)
M∗−1

s 0.979(3) 0.917(3)
asym [MeV] 29.9(8) 28.6(3)
Lsym [MeV] 41(16) 30
Cρ∆ρ

0 [MeV fm5] −41.4(8) 22.5(1.0)
Cρ∆ρ

1 [MeV fm5] −6(26) −39(19)

Cρ∇J
0 [MeV fm5] −62(6) −61(5)

Cρ∇J
1 [MeV fm5] 11(13) 3(15)

CJJ
0 [MeV fm5] −43(17) −39(15)

CJJ
1 [MeV fm5] −30(19) −4(22)

V n
0 [MeV fm3] −218.4(1.4) −206.5(1.2)

V p
0 [MeV fm3] −259.9(2.4) −249.4(2.0)

function in the direction of every component xj). However, this is not true
for any GUDE variant: for all variants, the optimization yields a minimum
where at least one INM parameter ends up at one of its bounds. To be able
to apply Eq. (6) anyway, we therefore restrict our analysis to the subspace
of parameters that do not end up actively constrained by the bounds and
evaluate the Jacobian only in the directions corresponding to that subspace.
See Ref. [21] for a related discussion.

Numerically, we compute the Jacobian by means of central differences
using the points {x±ηjej}, where ej are unit vectors in the directions of the
different parameters and the step widths ηj should be small. We choose ηj
as 10−5 of the scaling intervals of the different parameters given in Ref. [22]2.
For one functional, we check explicitly that this choice of ηj is small enough
(but not too small to be dominated by numerical accuracy) by comparing
against results obtained with a ten times larger step width. The resulting
standard deviations change by less than 10%, which hence can be interpreted
as an uncertainty of the standard deviations reported here.

In Table 1, we provide the parameter standard deviations σ that result
from the procedure explained above for the “no chiral” and “min. chiral”
functionals. In the “min. chiral” optimization, Lsym attained a value at the

2 For the CJJ
t parameters, which were not included in Ref. [22], we use

[−100, 100]MeV fm5 as scaling intervals.
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bound and is thus excluded from the analysis. Therefore, no value is given
for its standard deviation3. Due to correlations between the parameters,
this also has consequences for other estimated standard deviations. In par-
ticular, the reported standard deviation of asym is expected to be strongly
underestimated as Lsym and asym are typically strongly correlated. The
remaining isovector parameters show large standard deviations, signalling
they are poorly constrained by the used fit data. We observe this also by
comparing minima obtained with optimization runs starting from different
initial guesses. This is typical for current EDFs [4, 23].

The standard deviations can be interpreted as statistical uncertainties
that give a range of reasonable parameter values within the given model
and fitting protocol. On top of the limiting treatment of actively bound
parameters explained above, these statistical uncertainties cannot be con-
sidered full uncertainties of the GUDE functionals as systematic errors are
not explicitly taken into account. Such model uncertainties arise from the
EDF structure being incomplete or wrong [24] and are particularly hard to
model for nuclear EDFs, for which a unifying construction principle is not
known. However, their existence can be clearly inferred, for instance from
the systematic trends of the mass residuals around shell closures, see Fig. 2
below.

Often, correlation coefficients

Rjj′ =
Vjj′

σjσ′
j

(8)

(or coefficients of determination R2
jj′) are used to analyze correlations be-

tween different parameters. To compare correlation coefficients of different
GUDE variants in the given framework, we need to compute the covari-
ance matrices in the same parameter subspace for all functionals of interest.
We find that some correlation coefficients depend strongly on which sub-
space is used to compute them. For example, correlation coefficients of the
N2LO+3N functional change strongly once the isoscalar effective mass M∗

s is
included in the analysis, see Fig. 1 (while for the “min. chiral” variant barely
any change occurs). As for all functionals at least one parameter ends up at
its bound in the optimizations, we are not able to calculate correlation co-
efficients in the full parameter space. Thus, we abstain here from a detailed
analysis of the correlation coefficients. In the future, an investigation of
how the inclusion of pion-exchange terms changes the parameter landscape
would certainly be of interest.

3 Similar considerations apply to Esat and K in the “no chiral” case.
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Fig. 1. Parameter correlation coefficients of the N2LO+3N GUDE functional. In
the left panel, the coefficients are calculated in a parameter subspace without M∗−1

s ,
Esat, and Lsym, while in the right panel, only the latter two (which end up at their
bounds in the optimization) are excluded.

5. Results and analysis

We now turn to a brief investigation of the different GUDE variants
obtained from the optimization to address which pion contributions could
be useful ingredients for true ab initio EDFs. A more detailed examination
can be found in Ref. [12].

We find that many of the functionals behave similarly. Therefore, we
group them into three classes: we refer to the reference “no chiral” functional
as class 0, to the LO and NLO functionals collectively as class 1, and to the
remaining functionals as class 2. While the value of the χ2 at the minimum
shows no improvement for class 1 over class 0, the opposite is the case
when switching to class 2. All functionals in this class have χ2 ≈ 90, to
be compared with the clearly worse value of about 120 for the “no chiral”
variant, see Table 2.

Table 2. Performance of the different GUDE classes. We list the value of the χ2 at
the optimum and the binding energy root-mean-square deviations when comparing
to the experiment. The latter are calculated from all measured even–even nuclei
with Z ≥ 8 included in the 2020 AME. The given ranges comprise all functionals
within a given class.

class 0 class 1 class 2
χ2 122 145 86–91

Binding energy RMSD [MeV] 2.11 2.09–2.13 1.41–1.56
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Differences between the classes can also be observed in terms of EDF
parameters, e.g., see Table 1. Incompressibility, isoscalar effective mass,
and therewith correlated pairing strengths, as well as the isovector INM
parameters clearly change when going from class 0 or 1 to class 2. Compared
to that, the variations within class 2 are much smaller, which affirms our
grouping of functionals.

For a global comparison with the experiment, we compute ground states
of all even–even nuclei in the nuclear chart with Z ≥ 8 for which measured
binding energies are included in the 2020 AME [25]. The root-mean-square
deviations between the different GUDE variants and experimental binding
energies are given in Table 2. A significant reduction by about 30% is ob-
tained when switching from class 0 or 1 to class 2. In addition, the mean
deviation is almost halved, indicating that the energies are less biased (to-
wards underbinding) for class 2.

In Fig. 2, we show ground-state energy residuals for the “no chiral” and
“min. chiral” functionals. It becomes apparent that the main binding-energy
improvements observed for class 2 occur, on the one hand, around the N =
82 and N = 126 shell closures and, on the other hand, for light nuclei. The
quality of the description of charge radii (compared to data from Ref. [26]),
also plotted in Fig. 2, is largely insensitive to the GUDE variant considered.
Only a slightly better description for N ≈ 40 to 100 is observed for class 2.

As a simple validation check that basic features of nuclear shell structures
are properly reproduced, we compute single-particle levels using blocking
calculations in a few nuclei. The obtained shell gaps are very similar for all
GUDE variants and are in good agreement with shell gaps extracted from
the experiment.

In terms of analyzing the effects of the chiral contributions included in
the GUDE family, we restrict ourselves here to two points: First, 3N pion
exchanges seem to essentially have no effect in the present construction.
This is probably because the optimization of the parameters in the Skyrme
part of the EDFs effectively incorporates the effect of such 3N terms even in
the functionals which do not include these 3N terms explicitly. In particular
the density-dependent Skyrme contact term takes care of this, in agreement
with the original reason to include such a term in nuclear EDFs.

Second, we find that including just two chiral contributions on top of
the Skyrme structure is enough (after refitting the Skyrme parameters) to
obtain the improvements observed for the class 2 functionals. These are
the isoscalar NN pion-exchange Hartree contribution entering at N2LO and
the isoscalar NN pion-exchange Fock contribution at LO. The “min. chiral”
GUDE variant contains precisely only these two chiral contributions. We
reason in Ref. [12] why including these chiral terms yields the obtained
improvements and why the other chiral terms do not need to be included.
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Fig. 2. Differences of ground-state energies (upper panels) and charge radii (lower
panels) for even–even nuclei between values obtained with the “no chiral” and “min.
chiral” GUDE variants and experiment. Figure adjusted from Ref. [12].

The observed behavior of the functionals in terms of chiral orders might
seem to be in contradiction to the chiral EFT power counting, according to
which the importance of additional terms is reduced with every higher order
included. We believe this is because we only consider mean-field contribu-
tions, whereas the chiral power counting is formulated for the full potential,
and because the structure of the contact interactions in the GUDE function-
als (i.e., the Skyrme part) does not change with increasing order.

6. Conclusions

In this article, we reported on the GUDE EDFs which we constructed
by adding chiral long-range pion-exchange terms to a Skyrme-like structure.
Additionally, we presented here statistical uncertainty estimated for the ob-
tained parametrizations.

When including chiral contributions beyond NLO, we find a significant
improvement in the reproduction of experimental binding energies (while
being constrained to deliver reasonable infinite matter properties) compared
to a reference Skyrme EDF optimized according to the same protocol. Since
the chiral contributions are added in a parameter-free manner, the origin of
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the improvements has to lie in the structure of the considered chiral contri-
butions itself. This suggests that the pion-exchange terms considered here
may constitute useful ingredients for constructing EDFs from first principles.
However, these conclusions are based on a certain optimization setting. We
believe it would, therefore, be of interest to study if the improvement ob-
served here also carries over to other optimization settings.

I thank Jared O’Neal for helpful discussions and benchmarks of the
covariance-matrix computations. Calculations for this research were in part
conducted on the Lichtenberg high-performance computer of TU Darmstadt.
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