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An iterative adiabatic time-dependent Hartree–Fock–Bogoliubov
(ATDHFB) method is developed within the framework of the Skyrme den-
sity functional theory. The ATDHFB equation is solved iteratively to avoid
explicitly calculating the stability matrix. The contribution of the time-
odd mean fields to the ATDHF(B) moment of inertia is incorporated self-
consistently, and the results are verified by comparing them with the dy-
namical cranking predictions. The inertia mass tensor is calculated with
the density-derivative term evaluated by numerical differentiation.
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1. Introduction

Describing nuclear dynamics in terms of collective degrees of freedom
enhances our understanding of nuclear rotation, vibration, and fission. The
nuclear collective inertia measures the resistance of a nucleus to the collective
motion [1], which provides valuable insights into the nuclear structure.

The physical determination of the inertia against the collective motion
requires knowledge of nuclear microscopic dynamics. The ideal theoretical
framework should describe the collective motion using appropriate collec-
tive variables and encapsulate the interactions between individual nucleons
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within the collective inertia. A widely used microscopic approach to eval-
uate the moment of inertia is using the Inglis–Belyaev (IB) formula [2, 3].
However, it has the drawback of neglecting the time-odd mean-field effects,
hence underestimating the collective masses by a factor 1.2 ∼ 1.4 [4, 5]. In
a nucleus, the presence of a local nuclear interaction gives rise to time-odd
mean fields through local gauge invariance and spin–spin terms, an effect
that should not be overlooked in the analysis of the collective motion.

Assuming that the collective motion is slow compared to the single-
particle motion, the fully self-consistent treatment of the time-odd mean
field can be obtained with the adiabatic time-dependent Hartree–Fock [6]
(ATDHF, without pairing) or Hartree–Fock–Bogoliubov [3, 7] (ATDHFB,
with pairing) methods. The adiabatic methods yield collective Hamilto-
nians that depend on quadratic collective velocities and collective inertia,
bridging the gap between microscopic many-body theory and phenomeno-
logical models based on collective variables. However, explicit solutions are
computationally difficult, and more efficient algorithms are very much re-
quired. In the past, Dobaczewski and Skalski used iterative solutions of the
ATDHFB equations to analyze the quadrupole vibrational inertia function
in axially-deformed samarium and barium nuclei [7]. Similarly, Li et al. [8]
developed the ATDHF method based on the expansion of the inertia matrix,
and Petrík and Kortelainen [9] and Washiyama et al. [10] implemented the
iterative finite-amplitude method to solve the linear-response equations and
determine the time-odd mean fields.

Recently, we developed a novel method within density functional the-
ory to precisely solve the ATDHF and ATDHFB equations for arbitrarily-
deformed nuclei. An efficient iterative approach was used to implement the
time-odd mean fields exactly, enabling a microscopic and reliable evaluation
of inertia for surface vibrations, rotations, and fission.

2. Formalism

The forthcoming paper [5] provides a detailed description of the itera-
tive ATDHFB method. For brevity, here we focus on the formalism of the
iterative ATDHF method and neglect pairing.

The time-dependent density can be decomposed as [6]

ρ(t) = e(i/ℏ)χ(t)ρ0(t) e
(−i/ℏ)χ(t) , (1)

where the Hermitian and time-even operators ρ0(t) and χ(t) are regarded as
coordinates and momenta, respectively. Expanding Eq. (1) in powers of iχ,
the first-order correction to the single-particle density is

ρ1 = [iχ, ρ0] . (2)
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Applying a similar expansion to the single-particle Hamiltonian h and uti-
lizing the TDHF equation of motion iρ̇ = [h, ρ], the ATDHF equation can
be obtained as

iρ̇0 = [h0, ρ1] + [Γ1, ρ0] , (3)

where h0 represents the static single-particle Hamiltonian, and Γ1 is the
time-odd mean field.

The collective kinetic energy can be calculated from the collective co-
ordinate and momentum, K = 1

2Tr(ρ̇0χ) = − i
2Tr(ρ̇0[ρ1, ρ0]). As it should

depend on the inertia linearly and on the velocity q̇ quadratically, that is,
K = 1

2Mq̇2, the collective inertia can be expressed as

M = − i

q̇2
Tr(ρ̇0[ρ1, ρ0]) . (4)

Here, we propose a novel method to determine the time-odd correction to
the single-particle density by solving the ATDHF equation iteratively. First,
we express the ATDHF equation (3) in the Hartree–Fock (HF) single-particle
basis of the h0 eigenstates. Then the particle–hole (ph) matrix elements of
the time-odd density can be derived from the ATDHF equation, which is

ρ
(n+1)
1,ph =

1

ϵp − ϵh

[
iq̇
∂ρ0,ph
∂q

− Γ
(n)
1,ph

]
, (5)

where ϵp (ϵh) is the particle (hole) energy. Since the time-odd mean field
Γ1 is a functional of the time-odd correction to the density, ρ1, the above
equation can be solved by a fixed-point iterative method outlined below.

The procedure begins with a vanishing time-odd mean field Γ
(0)
1 = 0,

whereupon the collective mass equals the IB value. In each iteration, the
time-odd density ρ

(n+1)
1 is calculated according to Eq. (5). Then ρ

(n+1)
1 is

used to determine the time-odd mean fields, namely, ρ(n+1)
1 → Γ

(n+1)
1 . In

each iteration of the latter step, ρ1 defines the adiabatic basis of its eigen-
vectors. Properties of the adiabatic basis can be established in the following
way.

First, we note that the definition of ρ1 in Eq. (2) implies that it has only
non-vanishing matrix elements ph (ρ̃+1 ) and hp (ρ̃1), that is,

ρ1 =

(
0 ρ̃1
ρ̃+1 0

)
=

(
0 UrV +

V rU+ 0

)
, (6)

where columns of the N×N and M×N SVD matrices U and V , respectively,
are normalized and orthogonal (U+U = 1 and V +V = 1). Here, N (the
particle number) and M are the dimensions of the HF hole and particle
spaces, respectively, and r is a diagonal N ×N matrix of positive numbers.
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Second, we have,

ρ1

(
U
±V

)
=

(
0 UrV +

V rU+ 0

)(
U
±V

)
= ±

(
U
±V

)
r , (7)

that is, 2N columns 1√
2

(
U
±V

)
form the adiabatic basis of the ρ1 eigenstates

corresponding to eigenvalues ±r. The adiabatic basis is thus composed of
twice-particle-number (2N) “occupied” states appearing in pairs of opposite
“occupation numbers” and M − N empty states. This similarity with the
standard HF basis allows us to easily calculate the time-odd spatial densities
and currents in close analogy to the standard calculation of the time-even
densities and fields. Finally, the collective inertia M(n) is evaluated from
Eq. (4) at the end of each iteration. The fixed-point iteration stops when
achieving the desired precision for M.

The iterative ATDHF(B) method was implemented in the HFODD code
[11, 12], which solves the universal non-relativistic nuclear DFT equations
in the Cartesian-deformed harmonic oscillator basis. The advantage of this
efficient method is that it involves only one-body variables and avoids the
calculation of the two-body stability matrix [1] entirely, which for deformed
superfluid nuclei is a huge and usually numerically prohibitive task.

3. Results

The iterative ATDHF(B) method is well-suited for determining the col-
lective inertia of arbitrarily-deformed superfluid nuclei. In this section, three
applications are presented to verify its numerical reliability.

3.1. Rotational moment of inertia of the axial-deformed nucleus: 20Ne

We validate our method by comparing the ATDHF results with the dy-
namical cranking (DC) calculations. For the instance of rotating along
y-axis, in the DC calculation, the moment of inertia is obtained by Iy =
Jy/ωy, where a small cranking frequency ωy=0.001 MeV is used to generate
the corresponding angular momentum Jy and time-odd densities and mean
fields.

In Fig. 1, the calculated ATDHF moment of inertia of 20Ne is compared
with the value obtained from the DC method. The Skyrme interaction
SVT [13] is used. As presented in the figure, the ATDHF moment of inertia
is very sensitive to the single-particle energy cutoff. To achieve consistency
with the DC method, the ATDHF calculation must include all particle states.
The exact correspondence between the ATDHF and DC moment of inertia
in the full single-particle space demonstrates the accuracy of our iterative
method.
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Fig. 1. The ATDHF moment of inertia of 20Ne (solid line) compared with the value
evaluated from the dynamical cranking (DC) calculation (dashed line) for different
single-particle cutoffs. The Skyrme interaction SVT is used.

The ATDHF method gives a self-consistent treatment to the time-odd
mean fields that originate from the time-odd densities and currents. In the
coordinate-spin space, the scalar part of the density matrix ρ(rσ, r′σ′) is
defined as ρ(r, r′) =

∑
σ ρ(rσ, r

′σ), and the pseudo-vector part as s(r, r′) =∑
σσ′ ρ(rσ, r′σ′)⟨σ′|σ|σ⟩. Using these definitions, various time-odd densities

and currents can be obtained [14], for example, the vector current density

j(r) =
1

2i
[(∇−∇′)ρ(r, r′)]r=r′ , (8)

and pseudo-vector spin density

s(r) = s(r, r) . (9)

We analyzed the contribution of each time-odd density or current to
the moment of inertia and found the dominant contributions are from the
current (8) and spin (9) densities. In Fig. 2, we show the distributions of
current and spin densities of 20Ne rotating along the y-axis.

3.2. Rotational moment of inertia of the triaxial-deformed nucleus: 126Ba

The iterative ATDHF method is capable of evaluating the moment of
inertia of arbitrarily-deformed nuclei. In this section, we investigate the
moment of inertia of the triaxial-deformed nucleus 126Ba. The calculations
are performed with 16 harmonic oscillator shells. The SVT interaction is
used. The calculated intrinsic quadrupole moments of 126Ba are Q20 =
6.5945b, Q22 = 5.5582 b, which gives β = 0.18 and γ = 40.13◦. Since the
nucleus is triaxially deformed, the moments of inertia along the longest, the
shortest, and the intermediate axis are different. All the ATHDF moments
of inertia are in perfect agreement with the DC results. For example, for the
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Fig. 2. (Color online) Distributions of the current densities (8), panels (a) and
(b), and spin densities (9), panels (c) and (d), of 20Ne rotating along the y-axis,
projected on the x–y plane at z = ±2.0 fm. As the nucleus rotates along the
y-axis, at z = 2.0 and z = −2.0 fm the current flows in the opposite directions.
The spin density is mostly aligned along the y-axis and being parity-even, at z =

±2.0 fm it shows symmetric distributions. The colours (in arbitrary units) show
the amplitudes of the densities.

rotation along the y-axis, IATDHF
y = 13.14124 and IDC

y = 13.1417 ℏ2/MeV.
Both of them are significantly larger than the IB result of 9.84689 ℏ2/MeV.
This shows that the time-odd mean fields have a significant impact on the
rotational moment of inertia.

When the principal axes of 126Ba are aligned with the x-, y-, and z-axis,
its long, short, and intermediate axes can be oriented in six different spatial
configurations. In Fig. 3, we show the rotational moments of inertia of
126Ba in different orientations. The rotational moments of inertia along the
nucleus’s long, short, and intermediate axis, respectively, remain constant,
regardless of the nucleus’s orientation. The invariance validates the self-
consistency of the iterative ATDHF method.

Fig. 3. Moments of inertia of 126Ba rotating along the y-, z-, and x-axes with
different orientations.
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3.3. ATDHFB vibrational inertia of 74Ge

To evaluate the vibrational inertia mass tensor with the iterative
ATDHF(B) method, the density-derivative term in Eq. (5) is calculated as

∂ρ

∂q

∣∣∣∣
q=q0

= lim
δq→0

ρ[q0 + δq]− ρ[q0]

δq
(10)

with a small difference of the collective variable δq. To examine the accuracy
of the above formula, we calculated the quadrupole inertia mass tensor,

M =

[
B(a0) B(a0a2)
B(a2a0) B(a2)

]
, (11)

for 74Ge, where the collective variable q is a0 = ⟨2z2 − x2 − y2⟩ and a2 =
⟨x2 − y2⟩.

We used the Skyrme interaction SkM* [15] and the volume pairing force
Vt(r, r

′)=V t
0 δ(r−r′) (t=n, p) for V n

0 =−178.83 and V p
0 =−211.20MeV fm3.

Figure 4 presents the diagonal components of the IB and ATDHFB mass
tensor B(a0) and B(a2), both of them tend to stabilize as ∆ = δa0 = δa2
decreases from 0.1 b to 0.02 b, with uncertainties within 1%.
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Fig. 4. The diagonal components of the IB and ATDHFB (ADB) mass tensor
B(a0) and B(a2) for 74Ge at a0 = 3.5 b and a2 = 1.5 b. The density-derivative
terms are evaluated with positive numerical differences δa0 = δa2 ≡ ∆. The IB
and the ATDHFB inertia tend to stabilize as ∆ decreases from 0.1 b to 0.02 b, with
uncertainties within 1%.

The off-diagonal component of the mass tensor B(a0a2) depends on the
derivatives ∂ρ/∂a0 and ∂ρ/∂a2 simultaneously and is, therefore, more sen-
sitive to ∆. Table 1 shows the off-diagonal component calculated with
∆ = 0.02 b, where both positive and negative values of δa0 and δa2 with
|δa0| = |δa2| ≡ ∆ are used to evaluate the density-derivative terms. The un-
certainty caused by the numerical differentiation turns out to be around 4%.



2-A7.8 X. Sun et al.

The precision could be further improved by adopting a symmetric, three-
point, or five-point differential formula if necessary. Since the off-diagonal
component is almost one order of magnitude smaller than the diagonal ones,
its overall influence on the vibrational inertia is much smaller.

Table 1. The off-diagonal component of the IB and ATDHFB mass tensor for 74Ge.
The first and second sign in columns 2 to 5 indicates whether the density-derivative
with respect to a0(a2) is calculated with positive (+) or negative (−) difference,
respectively.

B(a0a2) [b−2MeV−1] −+ ++ −− +−
IB 0.02842 0.02714 0.02960 0.02835
ATDHFB 0.03297 0.03144 0.03447 0.03296

4. Conclusions

We developed a rapidly converging iterative algorithm to efficiently solve
the ATDHF or ATDHFB equations. The method involves only one-body
operators, thereby avoiding the calculation of the full stability matrix. The
collective rotations in the axial-deformed nucleus 20Ne and in the triaxial-
deformed nucleus 126Ba were investigated. The rotational moment of inertia
calculated by the ATDHFB method is in perfect agreement with the dy-
namical cranking method. To calculate the inertia mass tensor, the density-
derivative term is evaluated using numerical differentiation whereupon the
inertia mass tensor is obtained with an accuracy of around 1%.
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