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Our recent fully self-consistent model, that starts from QRPA on top of
Skyrme–Hartree–Fock–Bogoliubov (SHFB) and includes the coupling be-
tween quasiparticles and vibrations, is discussed. We highlight the signifi-
cant improvement of the results with respect to simple QRPA, and we focus
on the sensitivity to the choice of a specific Skyrme functional.
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1. Introduction

The study of nuclear Giant Resonances (GRs) has been, and still is, an
active field of research [1]. This is, on the one hand, linked to the efforts
to determine the nuclear Equation of State (EoS). In fact, GRs are collec-
tive modes that involve the coherent participation of many nucleons and,
as such, they bring valuable information on the in-medium nucleon–nucleon
(NN) interaction. While the nuclear Isoscalar Giant Monopole Resonance
(ISGMR) has been shown to be sensitive to the nuclear incompressibility [2],
the isovector modes have been intensively studied with the hope of under-
standing the isovector part of the NN Hamiltonian, the symmetry energy
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as well as exotic nuclei and neutron stars [3]. The search for new, elusive
nuclear excitation modes (toroidal excitation, to name only one) is actively
pursued. At the same time, it would be desirable to find highly-selective ways
to excite nuclei and obtain cleaner information about the quantum numbers
and other properties of collective states. Vortex photons, that carry orbital
angular momentum, have been proposed as a novel technique to selectively
study isovector states [4].

GRs usually appear as broad bumps in the excitation function (i.e.,
inelastic cross section as a function of the excitation energy). In addition to
their peak energy, or average energy, they are characterised by a conspicuous
width. The width amounts to several MeV, while typical excitation energies
are in the range between 10 and 30 MeV. The standard understanding is
that the width is either associated with coupling with more complex nuclear
excitations that lie at similar energy as the resonance, or ultimately with the
decay of the resonance by particle emission. However, this picture is still
not fully understood. Measurements and/or calculations of the different
decay channels are still scarce, although some few cases have been studied
in the past. For instance, the balance between direct and statistical particle
emission is still under debate.

The excitation of GRs is often described on the basis of one-particle–
one-hole (1p–1h) excitations. This amounts to the standard Random Phase
Approximation (RPA) theory that can be found in textbooks [5]. RPA is
generalised to Quasiparticle RPA (QRPA) in the case of open-shell nuclei.
RPA and QRPA cannot, as a rule, account for the whole GR width. They
can describe the fragmentation of the resonance, or their coupling to residual
1p–1h states, which is often referred to as “Landau damping”. By definition,
they cannot describe the coupling of the GR with more complex configura-
tions.

We have recently developed a fully self-consistent model that starts from
QRPA on top of Skyrme–Hartree–Fock–Bogoliubov (SHFB), and includes
the coupling with the most relevant configurations of the 2p–2h type: these
are 1p–1h states plus another nuclear vibration or “phonon”. These are also
called “doorway states” in what follows. This wording has its origin in the
fact that these states are the first step towards coupling with 3p–3h . . .
up possibly to a compound nucleus state where energy is statistically dis-
tributed among all possible degrees of freedom. In fact, it has been shown
that our model (named Quasiparticle Vibration Coupling, or QPVC, model)
is able to reproduce well the observed GR width. Our model has been orig-
inally introduced for charge-exchange GRs in Ref. [6] (cf. also [7] for a first
version of the model without the pairing). More recently, in Ref. [8], the
model has been applied to one of the most important non-charge-exhange
GRs, the aforementioned ISGMR. Using our model, we have been able to
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show that we can extract a consistent value for the nuclear incompressibil-
ity, starting from measurements in different nuclei; this was not the case
earlier, when simple QRPA was used and the value of incompressibility was
inconsistent when extracted from either 208Pb or Sn isotopes.

The present paper goes together with Ref. [9]. In this work, we have
extended our analysis and considered the application of the self-consistent
QPVC model to the Isovector Giant Dipole Resonance (IVGDR) and the
Isoscalar Giant Quadrupole Resonance (ISGQR). In the current paper, we
discuss the sensitivity of the QPVC results for ISGMR, IVGDR and ISGQR
to the chosen Skyrme EDF. The paper is structured as follows. In Section 2,
the formalism is briefly summarised. In Section 3, our results are shown and
commented on before conclusions are drawn in Section 4.

2. Formalism

The formalism of our self-consistent QPVC model is illustrated in detail
in our latest paper [9], and we provide only a brief sketch here.

We start from QRPA on top of fully self-consistent Skyrme HFB that is
solved in the canonical basis as was done earlier in Ref. [10]. The creation
operator of a QRPA state |n⟩ reads

Q†
n =

∑
a<b

X
(n)
ab α†

aα
†
b − Y

(n)
ab αbαa , (1)

where α† (α) are standard quasiparticle creation (annihilation) operators,
while X and Y are the forward-going and backward-going QRPA ampli-
tudes. In the QRPA+QPVC approach, the creation operator is generalised
to include the doorway state contribution and reads

O†
ν =

∑
a<b

(
X

(ν)
ab α†

aα
†
b − Y

(ν)
ab αbαa

)
+
∑
a<b,n

(
X

(ν)
abnα

†
aα

†
bQ

†
n − Y

(ν)
abnQnαbαa

)
.

(2)
Having this ansatz for the operator, one can use the equation-of-motion

method (in analogy to the standard QRPA) to determine the unknown am-
plitudes. The equation of motion reads

⟨QPVC|
[
δOν ,

[
H,O†

ν

]]
|QPVC⟩ = Eν⟨QPVC|

[
δOν ,O†

ν

]
|QPVC⟩ . (3)

Here, ν labels the excited states and Eν is the excitation energy with respect
to the ground state |QPVC⟩ that is the vacuum of the QPVC annihilation
operators Oν (for every ν). By introducing the conjugate operator O†

ν , and
by equating its first-order variation to zero, one obtains QPVC equations
that are similar to SRPA (cf., e.g., Ref. [11])
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Aab,a′b′ Bab,a′b′ Aab,a′b′n′ 0
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Aabn,a′b′ 0 Aabn,a′b′n′ 0

0 −A∗
abn,a′b′ 0 −A∗

abn,a′b′n′




X
(ν)
a′b′

Y
(ν)
a′b′

X
(ν)
a′b′n′

Y
(ν)
a′b′n′

 = Eν


X

(ν)
ab

Y
(ν)
ab

X
(ν)
abn

Y
(ν)
abn

 .

(4)
We do not give the detailed expressions of the matrix elements here but the
reader can see them in Ref. [9]. The key point is that the number of doorway
states can be very large in the GR excitation energy region, so solving the
latter equation may be hard or prohibitive. It is possible, instead, to use
standard projection methods to project the QPVC equation (4) onto the Q1

space spanned by the two quasiparticle excitations. The result is(
Aab,a′b′ +W ↓

ab,a′b′(E) Bab,a′b′

−B∗
ab,a′b′ −A∗

ab,a′b′ −W ↓∗
ab,a′b′(−E)

)(
X

(ν)
a′b′

Y
(ν)
a′b′

)
= E

(
X

(ν)
ab

Y
(ν)
ab

)
,

(5)
where A and B are the QRPA matrices and the QPVC effects are encoded in
the matrix W ↓. The different Feynman diagrams contributing to the matrix
elements of W ↓ are depicted in Fig. 1. The so-called subtraction method is
applied.

b′

ba

n

(I)

W
↓
ab,a′b′ =

+ + +

+ + + +

a′

a b

a′ b′

a b

a′

(III)

a b

b′

(IV )
a b

a′ b′

a b

a′ b′

ba a

a′ b′

b
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b′ a′
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n
n n

n n
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Fig. 1. The Feynman diagrams associated with the coupling between two-quasi-
particles and the doorway states. See the main text.

The matrix in Eq. (5) is complex symmetric and the solutions form a
biorthogonal basis. As a consequence, the strength function associated with
the operator Ôλµ is

S(E) = − 1

π
Im
∑
µν

⟨0|Ôλµ|ν⟩2
E −Ων + i

(
Γν
2 + η

) . (6)
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Here, Ων−iΓν/2 is the eigenvalue corresponding to the QPVC eigenstate |ν⟩.
The details that are not discussed in this section can be found in Refs. [7–
9, 12].

The effect of the coupling with doorway states, that is associated with
W ↓, is that of producing a shift of the GR peak and broadening it. These two
effects are associated with the real and imaginary parts of W ↓, respectively.
The shift is towards lower energy, namely the QPVC strength function is
peaked at lower energy than the QRPA one. We can understand this effect
since the doorway states lie, on average, at higher energy than the GR.
A specific example is shown in Fig. 2. In the case of the 120Sn nucleus,
and of the Skyrme interaction SV-K226, we display the energy shift ∆E
(that is the difference between the QRPA and QPVC peaks) in the case
of the ISGMR, IVGDR, and ISGQR. One can see that the shift is of the
order of ≈ 1–1.5 MeV and is slightly larger for the dipole and quadrupole,
as compared to the monopole case. The contribution from doorway states
associated with phonons having different multipolarity Jπ is also shown. The
3− contribution is the largest but also 2+, 4+, and 5− play an important
role because low-lying collective states exist. This is not the case for 0+ and
1−, and this explains why these phonons contribute less.
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Fig. 2. Energy shift ∆E = EQRPA − EQPVC in a specific case, and breakdown of
the contributions to it associated with different phonons. See the text for a short
discussion.

3. Results

3.1. ISGMR

In Fig. 3, we show some of our results for the ISGMR, by using two
different Skyrme EDFs that are SV-K226 and SkM∗. These are, respectively,
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shown in the upper and lower panels. The three nuclei that have been
considered are 120Sn, 208Pb, and 48Ca. The first remark is that the QRPA
curves in the different panels correspond to a set of discrete states that
have been smeared out using Lorentzian functions having a width of 1 MeV.
Even with this artificial width, QRPA does not reproduce the experimental
ISGMR width. QPVC gives a good reproduction of the spreading width
of the resonance, and this statement is not much interaction-dependent, if
one compares the upper and lower panels. It should be emphasised that
the three nuclei include two magic nuclei and a superfluid one, so the good
reproduction of the strength function and its width is not particularly related
to the magic or open-shell character of the nuclei under study, although
pairing has to be included obviously in open-shell systems. The other remark
is that the centroid energy is shifted from QRPA to QPVC, as we discussed
in the previous section, but this shift is not so much interaction-dependent.
The main difference between SV-K226 and SkM∗ is the centroid energy and
this is already true at the QRPA level.
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Fig. 3. Comparison between experimental data and theoretical QRPA and QPVC
calculations in the case of the monopole strength. The experimental data are taken
from Refs. [13–15].

To highlight this more clearly, in Fig. 4, we show, in the QPVC case,
the results associated with the two interactions in the same plot. SkM∗

has a lower incompressibility (215 MeV) compared to SV-K226 (226 MeV).
In 120Sn and 208Pb, one can clearly see that the centroid energy is lower
when the incompressibility is lower. This is harder to be seen in 48Ca,
due to a larger amount of fragmentation of the monopole strength in this
nucleus; however, the centroid energies calculated with SkM* and SV-K226
are, respectively, 19.89 MeV and 20.09 MeV, so the one associated with the
lower incompressibility is indeed slightly lower.
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Fig. 4. The same as Fig. 3 but without the QRPA results, and with the QPVC
results for the two EDFs in the same panel.

3.2. IVGDR

In the same way as in the previous subsection, we show here QRPA and
QPVC results for the dipole strength. We employ three different Skyrme
forces, and the three rows in Fig. 5 correspond to these three sets that are
SV-K226, SkM∗, and SAMi-T. The experimental data have a clear, smooth
Lorentzian shape. The QRPA results (smeared by Lorentzians as in the
monopole case) have, in most of the cases, double- or triple-peak structures
that are not present in the data. The QPVC results are much closer to the
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Fig. 5. Photoabsorbtion data compared with theoretical QRPA and QPVC calcu-
lations. The QRPA (QPVC) calculations are displayed by using the dash–dotted
(full) lines. The experimental data, corresponding to the crosses, are taken from
Refs. [16–18].
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data, the artificial structures that are not in the data disappear in most of the
cases, and the width is genuine and in good agreement with experiment. The
centroid energy is the main feature that depends on the chosen interaction.

This is more clearly shown in Fig. 6 where, in the same way as above, we
show the QPVC results associated with the different EDFs in the same plot.
We have made an extensive search and found out that SAMi-T is providing
the best description of IVGDR data in the nuclei that we have considered,
among several EDFs that had been tried. The plots in Fig. 6 give an idea
of the sensitivity of the results to the chosen Skyrme EDF.
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Fig. 6. The same as Fig. 5 but without the QRPA results, and with the QPVC
results for the three EDFs in the same panel.

3.3. ISGQR

The results for the ISGQR, both in the QRPA and QPVC case, are
shown in Fig. 7. Here, the energy shift and the broadening, when going
from QRPA and QPVC, are even more evident than it was in the ISGMR
and IVGDR study. The main ISGQR peak is very wide, and this agrees with
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Fig. 7. Comparison between experimental data and theoretical QRPA and QPVC
calculations in the case of the quadrupole strength. The experimental data are
taken from Refs. [13, 19, 20].
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the data from Refs. [13, 19, 20] (although the data of [13] are characterised
by a significant amount of strength above the resonance region, and this is
also true to some extent for the data from [20]).

Along the same spirit of our previous discussion, we show the QPVC
results for the two interactions in the same panel in Fig. 8. The ISGQR
energy has been known for some time to be sensitive, within (Q)RPA, to
the effective mass: to be more precise, the energy should be correlated with
(m/m∗)1/2. We have performed a study of this dependence in our recent
work [9], and extracted quantitative conclusions about the effective mass.
Here, we use two EDFs, SkM∗, and SV-K226, in order to show the sensitivity
of the QPVC results to the choice of the EDF. In the quadrupole case, the
results that better compare with experiment are those obtained by using
SkM∗.
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Fig. 8. The same as Fig. 7 but without the QRPA results, and with the QPVC
results for the two EDFs in the same panel.

4. Conclusions

In the present work, we have sketched our recent QRPA+QPVC ap-
proach, which is a fully self-consistent model built on top of Skyrme-HFB.
The model had been previously applied to charge-exchange states, while re-
cently it has been used to study the ISGMR and solve the famous problem of
the inconsistency between incompressibility values extracted from different
nuclei. Here, we present results for ISGMR, IVGDR, and ISGQR, and focus
on the sensitivity of the results to the choice of the EDF.

The QPVC results show a significant improvement with respect to QRPA
and, in general, reproduce very well the width of the different GRs. With
respect to QRPA, one does not only observe a broadening of the strength,
associated with a good description of the resonance width, but also a sys-
tematic downward shift. Using 120Sn as an example, we have compared
the shifts associated with the different modes and the contribution of the
doorway states associated with different phonons.
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The problem which is left is the lack of a single EDF that can describe
well the three resonances. For one of them, whether monopole, dipole, and
quadrupole, we can find a good Skyrme EDF that reproduces the exper-
imental data in various spherical nuclei, either magic or open-shell. The
“universal” EDF is still to be found.

Z.Z. Li acknowledges the support of the China Postdoctoral Science
Foundation under grant No. 2024M750047.
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