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The neutrinoless double-beta decay (0νββ) nuclear matrix elements
(NMEs) cannot be directly deduced from any experimental data, and their
reliable calculation remains a significant challenge for the nuclear physics
community. Advanced nuclear structure approaches have been developed
and applied to evaluate nuclear transitions of experimental interest. How-
ever, the calculated values of 0νββ NMEs still vary widely among different
methods, affecting predictions of decay rates and constraints on various
lepton violation parameters. The two-neutrino double-beta (2νββ) decay,
which has been experimentally confirmed for eleven isotopes, plays a cru-
cial role in testing nuclear structure models. In this context, we present the
modified formalism of the Second Tamm–Dancoff Approximation (STDA)
for the calculation of double-beta decay transitions. For 2νββ of 48Ca,
the corresponding NMEs are calculated within the STDA, and their de-
pendence on relevant nuclear structure parameters is investigated. Our
findings indicate that a significant quenching of the axial-vector coupling
constant is necessary to accurately reproduce the half-life of 2νββ decay.
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1. Introduction

Double-beta decay is a window to physics beyond the Standard Model
of particle physics intersecting the fields of particle, nuclear, and atomic
physics. There are two types of double-beta decay processes, depending
on whether neutrinos are or are not emitted. The former is called the two-
neutrino double-beta (2νββ) decay, and the latter is the neutrinoless (0νββ)
double-beta decay. Only the 2νββ decay is admissible if the neutrino is the
Dirac particle, while both types can take place if the neutrino is the Majo-
rana particle. In this sense, experimental observation of the 0νββ process
impacts determining one of the most fundamental properties of neutrinos [1].
Confirming the 0νββ decay would indicate that the lepton number conser-
vation is not an absolute law of nature, with significant implications for
understanding the matter–antimatter asymmetry in the universe. Further,
it would allow us to conclude about mass hierarchy and absolute mass scale
of neutrinos, possible sterile neutrinos, etc.

Studying neutrino properties and interactions involves the atomic nu-
cleus. To interpret data from 0νββ-decay experiments, a solid understanding
of nuclear structure is crucial for evaluating nuclear matrix elements (NMEs)
and their uncertainties. Current NME calculation techniques, such as the
Shell Model, Interacting Boson Model, and Quasiparticle Random Phase
Approximation (QRPA) [2], often yield differing results, with discrepancies
of up to a factor of 2 to 4 [3]. Variations in the effective axial-vector cou-
pling constant gA further complicate the extraction of fundamental neutrino
properties [3]. These challenges stem from many-body calculations based on
different nuclear structure models [3]. Employing appropriate nuclear probes
such as the 2νββ decay, ordinary muon capture, nucleon transfer reactions,
double-gamma decay, single-charge exchange, and double-charge exchange
reactions can help reduce the uncertainty associated with their calculation.
Although these studies do not directly access the 0νββ NMEs, they offer
valuable information for achieving this objective [3].

Accurate measurements of the allowed 2νββ-decay modes can constrain
some of the nuclear model parameters and act as a benchmark for the model
in studies of 0νββ decay, as the calculations for the 0νββ mode use the same
components as those for the 2νββ mode. Both decay modes are governed by
the second-order weak interaction operators, connecting the same initial and
final nuclear states. The main difference is that the 2νββ NMEs are given
by transitions through 0+ and 1+, and 0νββ NMEs by transitions through
all multipoles of the intermediate nucleus, respectively.

In this contribution, the Second Tamm–Dancoff Approximation which is
successfully exploited for a description of the electromagnetic nuclear exci-
tations [4], is modified for a calculation of double-beta-decay transitions and
applied for an evaluation matrix elements governing the 2νββ decay of 48Ca.
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2. Theoretical formalism

For particle–hole configurations that alter the type of nucleon, the Tamm–
Dancoff Approximation (TDA) [5] and the Second Tamm–Dancoff Approx-
imation (STDA) [6] many-body methods are briefly presented.

The nuclear Hamiltonian takes the form

Ĥ =
∑
i

ei : a
†
iai : +

1

4
V NN
ijkl : a†ia

†
jalak : . (1)

Here, a†i and ai are the creation and annihilation operators of the nucleon,
respectively. The index i = (nilijimiτi) designates the single nucleon state
quantum numbers (ni, li, ji,mi, τi), where n, l, j, m, and τ denote the prin-
cipal quantum number, orbital momentum, the total angular momentum,
projection of the total angular momentum, and projection of the isospin
distinguishing proton and neutron states, respectively. The symbol : : de-
notes normal ordering with respect to unperturbed ground state |Ψ0⟩, i.e.
the Slater determinant where the nucleons occupy the lowest allowed single-
particle states. The single-particle energies ei are obtained using a Coulomb-
corrected Woods–Saxon potential [7]. The interactions employed V NN

ijkl are
the Brueckner G-matrices which are a solution of the Bethe–Goldstone equa-
tion with the Argonne V18 one-boson exchange potential [8].

Within the TDA, the nuclear Hamiltonian (1) is diagonalized in the con-
figuration space spanned by all particle–hole configurations a†pah|Ψ0⟩. The
corresponding eigenvalue equation reads∑

p′h′

(
(ep − eh)δpp′δhh′ + V NN

p′hh′p

)
cµp′h′ = ETDA

µ cµph , (2)

where ETDA
µ are the nuclear eigenenergies and cµph are the corresponding

amplitudes. We use the notation in which p, p′ (h, h′) indices represent
particle (hole) states, respectively. As particle–hole excitations also include
those changing neutron into a proton (and vice versa), the excitation energies
of not only (A,Z) nucleus but also those associated with (A,Z − 1) and
(A,Z + 1) nuclei, are obtained.

The nuclear Hamiltonian (1) is diagonalized in the space spanned by
all particle–hole a†pah|Ψ0⟩, and 2-particle–2-hole a†p1a

†
p2ah1ah2 |Ψ0⟩ configura-

tions. By solving an eigenvalue equation, which is described, e.g., in [6], we
obtain the eigen energies ESTDA

µ and the corresponding wave functions

|STDA;µ⟩ =

∑
ph

Xµ
pha

†
pah +

∑
p1<p2,h1<h2

X µ
p1p2h1h2

a†p1a
†
p2ah1ah2

 |Ψ0⟩ .

(3)
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As a result, the Eq. (3) nuclear states in (A,Z) nucleus and the neighboring
(A,Z ± 1) and (A,Z ± 2) nuclei are described.

The 2νββ Fermi (F) or Gamow–Teller (GT) NMEs can be written as

MF/GT =
∑
λ

⟨f ||ÔF/GT||λ⟩⟨λ||ÔF/GT||Ψ0⟩
ETDA

λ − 1
2E

STDA
f

, (4)

where |Ψ0⟩ is the ground state of the parent nucleus in the mean-field ap-
proximation, namely the Slater determinant of the nucleons occupying the
lowest allowed single-particle levels in the Woods–Saxon potential. |λ⟩ and
|f⟩ stand for the states of the intermediate nucleus (A,Z + 1) of the TDA
method and the ground state of the daughter nucleus (A,Z+2) of the STDA
method, respectively. ÔF = τ+ (ÔGT = τ+σ1) denotes the Fermi (Gamow–
Teller) operator, τ+ changes neutron into proton, and σ1 is the vector oper-
ator given by the Pauli spinor. As the ground state of the even–even nucleus
(A,Z) has zero spin and even parity, for the Fermi (Gamow–Teller) transi-
tion, the states |λ⟩ of the intermediate nucleus are of the multipolarity 0+
(1+). For the 2νββ-decay half-life, we have(

T 2ν
1/2

)−1
= g4Am

2
e

∣∣∣∣MGT − MF

g2A

∣∣∣∣2G2ν , (5)

where G2ν is the phase-space factor [3], and me is mass of electron.

3. Results

The 2νββ decay of 48Ca is considered. We have
48Ca → 48Ti + 2e− + 2ν̄e . (6)

This second-order transition is realized through virtual states of the inter-
mediate nucleus 48Sc.

The 2νββ NMEs given in Eq. (4) are calculated within the TDA and
STDA methods, based on a single-particle model space that includes N=0–6
major oscillator shells (i.e., 28 j-levels). The evaluated energy of the ground
state of the intermediate nucleus 48Sc, relative to the ground state of the
initial nucleus 48Ca, ETDA

6+1
, is −1.219 MeV. This value is 0.4284 MeV be-

low its experimental value, which corresponds to Qβ = 0.2795 MeV [9].
The difference in ground-state energies between the initial 48Ca and final
48Ti nuclei ESTDA

0+1
evaluated within the STDA method was obtained to be

−4.425 MeV, i.e., 0.865 MeV higher, as the energy corresponding to THE
measured value of Qββ is 4.268 MeV [9]. The corresponding values of Fermi
MF and Gamow–Teller MGT are −2.073× 10−3 MeV−1 and 0.1668 MeV−1,
respectively.
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The calculated values of MF,MGT, along with the mass of electron
me = 0.511 MeV, the phase space factor G2ν = 15550×10−21 year−1, and as-
suming unquenched value gA = 1.27 are used to compute the half-life of the
2νββ decay, which is compared to the experimental value T1/2 = 5.3× 1019

years [10]. A quenching factor q = 0.496 for the free nucleon axial-vector
coupling constant gA is introduced to achieve an agreement.

We can get a new estimate for the values of MF,MGT by systemat-
ically shifting the TDA and STDA energies. This adjustment allows us
to match the experimental ground-state energy of 48Sc and (48Ti) corre-
sponding to Qβ = 0.2795 MeV (Qββ = 4.268 MeV). In doing so, we find
MF = −1.670 × 10−3 MeV−1 and MGT = 0.1361 MeV−1. To accurately
reproduce the experimental half-life, we must apply a quenching factor
q = 0.550 to gA.

In Fig. 1, the matrix elements MF and MGT are examined as functions
of gph, which renormalizes the particle–hole proton–neutron residual inter-
action. For each calculation with fixed gph, the values of TDA and STDA
energies in Eq. (4) are systematically shifted to match the experimental
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Fig. 1. The Fermi MF (left panel) and Gamow–Teller MGT (right panel) NMEs as
a function of the parameter gph. The corresponding calculations utilize the TDA
and STDA methods for 2νββ decay of 48Ca. The values of TDA and STDA
energies in Eq. (4) are systematically shifted to match THE experimental ground-
state energies of 48Sc (48Ti), which relate to Qβ = 0.2795 MeV (Qββ = 4.268 MeV),
respectively.
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ground-state energies of 48Sc (48Ti), corresponding to Qβ = 0.2795 MeV
(Qββ = 4.268 MeV), respectively. The results show that the values of the
Fermi (Gamow–Teller) NMEs increase (decrease) as gph increases. Notably,
it is observed that |MF| ≪ |MGT|. Additionally, for gph ≈ 1.05, the MF val-
ues change from negative to positive, indicating a restoration of the isospin
symmetry.

In Fig. 2, the dependence of the quenching factor q for gA on the param-
eter gph is presented. The quenching was obtained from Eq. (5) to match
the experimental half-life T1/2 = 5.3×1019 years, using the calculated NMEs
shown in Fig. 1. The small irregularity in the dependence of q on gph around
the point of ≈ 1.05 is due to MF, which is changing from a negative to a pos-
itive value in this region. Overall, as gph increases, the quenching increases
as well, but it does not reach the value of q = 1.
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Fig. 2. The dependence of the quenching q of gA on the parameter gph. This
quenching was obtained from Eq. (5) to match the experimental half-life T1/2 =

5.3× 1019 years, using the calculated NMEs presented in Fig. 1.

This work marks the beginning of a larger project aimed at enhancing
our formalism by incorporating 2-particle–2-hole excitations in both the in-
termediate and final descriptions of nuclei. In the current study, we have
focused this approach solely on the daughter nucleus. These configurations
may be critical for understanding the significant value of the quenching fac-
tor q, essential for improving our predictions of nuclear matrix elements
(NMEs). This topic will be the focus of an upcoming publication.
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4. Conclusions and outlook

We provided a formalism to calculate double-beta NMEs within the TDA
and STDA methods. These many-body approaches were applied to calculate
NMEs governing the 2νββ decay of 48Ca. In particular, the intermediate
nucleus 48Sc and the final nucleus 48Ti were described within the TDA and
STDA, respectively. An effective Hamiltonian based on the Wood–Saxon
single-particle energies and effective G-matrix interaction based on the Ar-
gonne V18 nucleon–nucleon potential. The dependence of calculated Fermi
and Gamow–Teller NMEs on the parameter gph renormalizing the particle–
hole proton–neutron residual interaction of nuclear Hamiltonian was studied.
It was found that a significant quenching of the axial-vector coupling con-
stant is needed to match the measured half-life. Significant work remains
to assess all relevant sources of theoretical uncertainty before any claims
to a final NMEs can be made. We anticipate that we need to include the
2-particle–2-hole configurations in the description of the intermediate and
possibly also the parent nucleus of the double-beta decay transition, which
might affect the value of the quenching factor. Further investigation is in
progress to better describe double-beta-decay NMEs.
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