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We propose the use of a decoupling renormalization scheme in the cal-
culation of NLO corrections to SM-like Higgs boson decays in the beyond
the Standard Model models. The advantage of this particular scheme is its
decoupling property in the presence of a heavy BSM physics and the possi-
bility to directly include known higher-order Standard Model corrections.
We illustrate the use of this scheme by analysing the h → µ+µ− decay in
a simple Standard Model extension by an S1 leptoquark.
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1. Introduction

Since the discovery of the Higgs boson and with recent upgrades of
the LHC, the electroweak (EW) sector of the Standard Model has become
a high-precision testing ground for the beyond the Standard Model (BSM)
physics [1]. With the upcoming High-Luminosity LHC upgrade, we expect
measurements of electroweak observables within a few percent accuracy, even
for branching ratios of the Higgs boson to light fermions [2, 3]. This increased
precision will give a unique opportunity to probe BSM physics, including
BSM Higgs sectors. However, the data obtained so far does not show any
deviations from the SM and, in particular, confirm that the Higgs boson is
SM-like. If one wants to use the Higgs boson as a probe of New Physics,
this calls for an improved accuracy of theoretical predictions. This can be
broadly achieved in two ways, by performing higher-order calculations in
either the effective field theory (EFT) parametrization [4] or directly in the
BSM theory. While the first approach requires a large separation of the
SM and BSM scales, the second one works regardless of that and allows to
study models with at least some light BSM states that show some promise
for discovery.

∗ Presented by J. Lang at the 31st Cracow Epiphany Conference on the Recent LHC
Results, Kraków, Poland, 13–17 January, 2025.

(5-A18.1)

https://www.actaphys.uj.edu.pl/findarticle?series=sup&vol=18&aid=5-A18
https://orcid.org/0009-0000-2245-321X
https://orcid.org/0000-0002-1191-6343


5-A18.2 J. Lang, W. Kotlarski

A lot of work has been done in the past to calculate QCD and EW correc-
tions to Higgs observables in the SM [5]. The go-to renormalization schemes
for higher-order calculations are the MS and the on-shell schemes. The prob-
lem is that on-shell schemes are often model-specific, while MS becomes un-
reliable in the case of high-mass scale, which is where the usual advantage
of the aforementioned EFTs over direct calculation enters the game.

To circumvent this issue, we explore the possibility of an application of
decoupling renormalization scheme in automatized BSM calculations. Ulti-
mately, the discussed approach will be implemented in FlexibleDecay, a sub-
module of the spectrum-generating generator FlexibleSUSY [6–8].

2. Decoupling renormalization scheme for higher-order
BSM corrections

While there are infinitely many possible renormalization schemes, usu-
ally higher-order SM calculations are performed in the MS or the on-shell
scheme. The MS scheme allows for easy analytic calculations, at the cost
of introducing large corrections in the case of a heavy BSM sector and be-
cause of that can introduce large uncertainties. The on-shell scheme, on
the other hand, does not exhibit this behaviour but is usually model- and
process-specific, and hard to apply in an automatised fashion.

The proposed here decoupling renormalization scheme combines advan-
tages of both schemes. It is not plagued by large, unphysical BSM contribu-
tions and separates BSM and SM sectors in such a way that already known
higher-order corrections from the pure SM can be easily incorporated.

The scheme is defined as follows. For some parameter P that exists
both in the SM and BSM theory, the decoupling scheme is defined by the
renormalization condition

P dec
BSM = PMS

SM . (1)

Here, the exponent signifies that the parameter is renormalized in the de-
coupling or the MS scheme, while subscript labels the theory from which
it comes. We can calculate an explicit expression for the renormalization
constant δP dec

BSM. To do so, we parametrize the bare parameter P0 as

P0 = P dec
BSM + δP dec

BSM = POS
BSM + δPOS

BSM , (2)

P0 = PMS
SM + δPMS

SM = POS
SM + δPOS

SM . (3)

Using the renormalization condition and the requirement that we want to
predict the same values for the on-shell renormalized parameters in both
theories, we subtract both equations and obtain

δP dec
BSM = δPMS

SM + δPOS
BSM − δPOS

SM . (4)
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The physical significance of Eq. (4) is captured by the division of δP dec
BSM

into a renormalization constant δPMS
SM that holds the SM MS contributions

and the piece δPOS
BSM − δPOS

SM, the difference of on-shell renormalization con-
stants between BSM and SM theories. Within the first term, we can add
the higher-order SM corrections, while the difference is free of any logarith-
mically growing BSM contributions.

3. Example application: S1 leptoquark

Equation (4) is the master equation for the calculation of one-loop cor-
rections in the decoupling scheme. To see it in action, we calculate the
decay width of a Higgs boson into a lepton and anti-lepton pair in the S1-
leptoquark model. While current mass limits on leptoquarks make an EFT
approach valid and actually much easier, this model features several prop-
erties which make it a simple yet illustrative example.

In the S1-leptoquark model, the SM gets extended by the leptoquark ϕ
which transforms as

(
3, 1,−1

3

)
under the SM gauge groups SU(3)c×SU(2)L×

U(1)Y . The SM Lagrangian gets extended in the Higgs sector by

LH ⊃ −gHϕ

(
H†H

)(
ϕ†ϕ

)
, (5)

and in the Yukawa sector by

LY ⊃ Y LL
ij

(
QC

i

T
iσ2 Lj

)
ϕ† + Y RR

ij

(
qCu,i le,j

)
ϕ† + h.c. (6)

Here, the C indicates the charge conjugation operator, Q and qu indicate
the left-handed quark doublet and the right-handed up-type quark singlet,
respectively, L and le are analogues fields in the lepton sector, and H is
the Higgs doublet. For now, we are interested in the decay of a Higgs
particle into a lepton and an anti-lepton. At the one-loop level, there are two
Feynman diagrams that contain leptoquarks, which are depicted in Fig. 1.
When analysing the model in the decoupling scheme, we need to look at two
behaviours of these diagrams. First, by power-counting, we get that the left
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Fig. 1. Leptoquark contribution to the h → µ+µ− decay. By power counting, the
left diagram is UV divergent, while the right one is not.
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diagram is UV divergent, while the second diagram is not. The second point
concerns the BSM scale, in this case, the leptoquark mass. Increasing the
mass also increases the weight of these diagrams. We see this when we look
at the amplitude of this decay

iA = FLPL + FRPR

=
3mt

16π2v

{[
B0

(
m2

µ,m
2
ϕ,m

2
µ

)
+ . . .

] (
Y RR†

)
23
Y LL
32 + . . .

}
PL

+
3mt

16π2v

{[
B0

(
m2

µ,m
2
ϕ,m

2
µ

)
+ . . .

] (
Y LL†

)
23
Y RR
32 + . . .

}
PR . (7)

Here, mt is the top quark mass, mµ is the muon mass, v is the vacuum expec-
tation value of the Higgs field, B0 is the Passarino–Veltman (PV) function,
and dots stand for contributions proportional to other PV functions. Look-
ing at the analytic expression for the B0 function

B0(p,m1,m2) =
1

ϵ
−log

(
m2

1

µ2

)
+1−

1∫
0

dx log

(
1 +

1− x

x

p2

m2
1

− (1−x)
m2

2

m2
1

)
,

(8)
we see the logarithmic increase with the leptoquark mass, which eventually
leads to a divergence for an infinitely heavy leptoquark. This behaviour is the
root of possible large uncertainties in other renormalization schemes. If we
now include the counterterm for the Higgs decay in the decoupling scheme,
given by Eq. (4), we find that the B0 contribution is completely subtracted
and the renormalized amplitude decreases with increasing leptoquark mass.
This behaviour is depicted in Fig. 2. The plots are created by fixing all the
input parameters, that is the masses and Higgs couplings, and varying only
the leptoquark mass. This captures the general behaviour of the decoupling
renormalization scheme. The blue line shows the MS renormalized form
factor which clearly exhibits the logarithmic growth for large leptoquark
masses. The counterterm, the green line, has the same behaviour. Adding
both together results in the orange line, which represents the form factor
renormalized in the decoupling scheme, that tends to 0 in the mϕ → ∞
limit.

As the next step, we can include the remaining contributions to the Higgs
particle decaying to muons. The form factors in this case are depicted in
Fig. 3. The green line shows the MS renormalized SM contributions. The
blue line shows the MS renormalized BSM form factors and the orange line
presents the form factors renormalized in the decoupling scheme, where the
renormalized form factor approaches the SM result.
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Fig. 2. Leptoquark contribution to the MS renormalized form factors (blue), the
decoupling-scheme counter term (green), and the form factor renormalized in the
decoupling scheme (orange). The MS result without a decoupling counter term
exhibits a logarithmic growth with the increasing BSM scale.
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Fig. 3. Complete form factors (including all SM and BSM contributions) for the
h → µ+µ− decay. The blue line shows the MS renormalized form factors, the
orange line the corresponding form factor in the decoupling scheme, and the green
line the pure SM MS result. The blue line features the expected logarithmic growth
with the mass scale of the BSM sector. This is addressed in the decoupling scheme,
where the renormalized form factor approaches the SM result.
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4. Summary

We propose the use of a decoupling renormalization scheme for the cal-
culation of one-loop BSM corrections to SM-like Higgs boson decays. This
scheme’s renormalization constants consist of two pieces. First, there is
a part that captures the 1

ϵ divergencies of the SM contribution. The second
part is the difference between the on-shell renormalization constants in the
full theory and in the SM. This last part is by construction UV-finite and free
of large logs in the presence of heavy BSM physics. This makes this scheme
reliable in parameter spaces motivated in light of the non-observation of any
light BSM physics, as well as particularly well-suited for automatization of
the calculation of Higgs boson decays in arbitrary BSM models.

We show how this renormalization scheme works in practice by calculat-
ing the Higgs decay to muons in the S1-leptoquark extension of the SM. We
prove by direct calculation that the renormalized h → µ+µ− form factor has
a decoupling property and converges to the SM result in the limit of a large
leptoquark mass.
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