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Recent theoretical results renewed the interest in charged-particle mul-
tiplicity distributions. The Shannon entropy of such distributions is con-
jectured to be related to the entanglement or von Neumann entropy of
the partonic quantum system. In this paper, we show that the measured
charged-particle multiplicities can be derived from the principle of max-
imum entropy (POME or MAXENT) without any a priori physical as-
sumption. The approach provides a natural explanation for the well-known
negative binomial shape of the measured distributions.
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1. Introduction

It has been theorized that considering the proton as a (maximally) en-
tangled partonic quantum system could explain many puzzling theoretical
and experimental observations [1–3]. The proton’s wave function is partially
probed by another proton or electron, leading to entanglement between the
probed and unprobed regions. The proposed observable is the entanglement
or von Neumann entropy, which quantifies the degree of “entanglement”
within the quantum system.

A series of papers aimed at describing the phenomenon and provides
evidence to quantum entanglement between the sampled and non-sampled
parts of the proton in the data by utilizing a partonic dipole picture of pQCD
[3–8]. The calculations were compared to multiplicity measurements from
proton–proton [9–11] and electron–proton [12] collisions, showing convincing
agreement between the data and theoretical predictions.

Inspired by the success of the assumption of maximal entropy of the
initial partonic system, it is worth investigating the problem from the final-
state perspective. The ultimate goal of this paper is to describe the measured

∗ Presented at the 31st Cracow Epiphany Conference on the Recent LHC Results,
Kraków, Poland, 13–17 January, 2025.

(5-A19.1)

https://www.actaphys.uj.edu.pl/findarticle?series=sup&vol=18&aid=5-A19
https://orcid.org/0000-0002-4447-4836


5-A19.2 S. Lökös

charged-particle distributions using the general principle of maximal Shan-
non entropy (POME), which has proven to be a powerful tool for addressing
classical statistical physics problems in classical [13] as well as in quantum
systems [14]. The essential idea is that Shannon entropy serves as the primer
quantity, subject to certain constraints dictated by the data itself. Then the
entropy is maximized subject to the constraints and a distribution is ob-
tained that can be regarded as the least bias choice and containing the least
amount of a priori assumptions about the physical system. Thus, the use
of POME is not the application of physical laws, but a method of reasoning
that ensures that no tacit arbitrary assumptions are introduced [13]. A sim-
ilar approach was adopted elsewhere, see e.g. Refs. [15, 16] and references
therein.

2. Charged-particle multiplicities from POME

The multiplicity of charged particles is a statistical observable by its
nature. The distribution of multiplicities can be interpreted as a probability
distribution and is therefore normalized to unity. This interpretation can
be regarded as constraint. With no further constraints, an assumption of
a previous work can be recovered [4]. The final-state distributions can be
directly derived from POME introducing an extra constraint that fixes the
mean of the distribution.

2.1. Initial state parton distributions

If the initial partonic system is maximally entangled, it can consist of N ,
equally probable states, i.e., the probability of the partonic configurations
is uniformly distributed: p(n) = 1

N . Substituting this probability into Shan-
non’s entropy formula, the entropy of the system can be derived. The num-
ber of states is N , therefore the entropy Sparton, too, can be expressed with
gluon (g(x,Q)) and quark (Σ(x,Q)) distribution function as

Sparton = −
∑
n

p(n) ln p(n) = ln(N) = ln(xg(x,Q) + xΣ(x,Q)) , (1)

where x is the Bjorken-x and Q is the virtuality. Hence, Sparton can be
obtained as described in Refs. [3–8]. Let us emphasise that the assumption
of the maximal entanglement is expressed through the probability p(n) = 1

N
which leads to the result in Eq. (1).

Now, instead of assuming this distribution, let us derive it from the
principle of maximum entropy (POME) using the variational method. The
functional to be maximized is given by
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F0[ p, α] = −
∞∫
0

p(n) ln(p(n))dn+ α

 ∞∫
0

p(n)dn− 1

 , (2)

where the first term is Shannon entropy and the second term, with α being
a Lagrange multiplier, enforces the normalization condition, ensuring that
p(n) is a probability distribution. Since it is the least constrained scenario,
we shall denote it with the subscript ‘0’. By performing the variation and
utilizing the constraint, the probability can be expressed as

δF
δp

⇒ p(n) = eα−1 , eα−1

∞∫
0

dn = 1 ⇒ p(n) =
1

N
. (3)

Entropy is chosen as the fundamental concept, and by maximizing it, the
probability distribution (the uniform distribution) of the initial-state par-
tonic system can be derived. Now, let us see how the final-state distributions
can be obtained with an additional constraint.

2.2. Final-state hadron distributions

The same calculation can be repeated to derive the final-state multiplic-
ity distributions, however, an additional constraint needs to be introduced.
In the measurements, the multiplicities are observed to have a mean (denoted
by µ). Therefore, an additional constraint can be included using a Lagrange
multiplier β, as follows:

F [ p, α, β] = F0[α, p] + β

 ∞∫
0

np(n)dn− µ

 , (4)

where F0[α, p] is defined in Eq. (2). Using the variational method, the
probability can be calculated as previously

p(n) = λ e−λn ⇒ Shadron = 1− ln(λ) , (5)

where λ = 1/µ is the rate parameter of the distribution. This result can be
considered to be a prediction and compared to the data with a free parameter
to be fitted. Let us point out that the mean is constant, which in reality, is a
good approximation for measurements performed in narrow rapidity ranges.

LHCb measured [17] charged-particle multiplicities in disjoint, fixed-
width rapidity windows of 0.5 units, selected within the range of 2 < η < 4.5.
This approach provides the multiplicity distributions, hence their entropy as
a function of rapidity. ALICE, ATLAS, CMS (see e.g. in Refs. [9–11]) as
well as earlier experiments such as, e.g., at UA5 [18] or E665 [19], measured
multiplicities cumulatively over wider and wider rapidity intervals, typically
centered at η = 0.
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3. Comparison to data

If the charged-particle multiplicity distributions are measured in narrow
rapidity windows such that the µ ≈ const. approximation holds, then Eq. (5)
can be fitted to the data. A comparison with the LHCb measurement [17]
was performed, and an example fit is shown in the left panel of Fig. 1.
The extracted Shannon entropy is presented in the right panel of Fig. 1.
(Comparison with data measured using expanding rapidity windows is also
possible but requires further developments of the presented methods, as
discussed in Section 4.)
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Fig. 1. An example fit of the multiplicity distributions (left) measured by LHCb
[17] in 2 < η < 2.5 range of rapidity. The fit excludes points n < 3. The extracted
entropies as functions of rapidity (right).

The distribution derived from the POME can describe the data, and
the extracted entropy is approximately constant. The parameter values
and the χ2/NDF are given in the plot. The POME-based description of the
multiplicity distributions is statistically acceptable. The entropy is observed
to be constant which is in agreement with the H1 result [12].

4. Towards large rapidity intervals

The above derivation assumed that the mean is constant which is only
valid in a narrow rapidity interval. To describe distributions measured in
wider rapidity intervals, two main approaches can be considered. One can
compose multiple exponential distributions from Eq. (5) into a single distri-
bution. Another way is to generalize the constraint so the mean depends on
the variable as µ = µ(n). In this paper, we follow the first approach, while
the second is left for discussion in a future work.



Charged-particle Multiplicity Distributions Derived . . . 5-A19.5

Let us consider that within a narrow rapidity window, the exponential
distribution can describe the measured multiplicity. To extend the rapidity
range to twice its width, one could calculate the convolution of the distribu-
tion with itself. Repeating this process N times would ultimately lead to the
Gamma distribution, denoted by Γ (k = N,λ), where λ = 1/µ is the rate pa-
rameter, and k is so-called the shape parameter. The Gamma distribution
is known to be the scaling function of the negative binomial distribution.
Indeed, with the Poisson–Gamma mixture or Poisson transformation, which
transforms a continuous distribution into a discrete one, it can be shown
that if Y ∼ Γ (k, λ) and X ∼ Poisson(µ) as µ = Y , then

P (X = x|µ) = NBD(k, n̄ = k/λ) . (6)

Consequently, it is shown that a natural explanation for the widely observed
negative binomial distribution (NBD) shape of charged-particle multiplici-
ties emerges from the POME-based derivation: the origin of the NBD shape
lies in the convolution of maximal entropy distributions repeated k = N
times. This argument is more general than the well-known clan model [20].
Let us examine the relation between the parameters of the Gamma distri-
bution and those of the NBD

kΓ = kNBD , λΓ =
kNBD

n̄
. (7)

These relations have three consequences. First, k should depend linearly
on the width of the rapidity window; it is observed. Second, the entropy
should saturate. It is expected that the entropy does not increase indefinitely
as more phase space is covered — this saturation behaviour was already
observed in the UA5 measurements [18, 21].

Finally, k should be a positive integer as it is the number of underly-
ing or convoluted exponential distributions. However, this behaviour is not
confirmed by the experimental results. The reason could be short- and long-
range correlations that would reduce entropy but were not considered in the
derivation. Also, by convoluting exponential distributions, tacitly, a resolu-
tion is defined, which may not be valid across all regions. It is also important
to note that the negative binomial parameters are strongly correlated, which
may be a consequence of the relationship shown in Eq. (7).

5. Summary

The derivation of the charged-particle multiplicity distributions was pre-
sented based on the principle of maximal entropy. The derived distributions
have a well-known functional form that describes the data well in a narrow
rapidity ranges, where the constant mean approximation can be considered
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to be valid. The results were compared to the LHCb data and Shannon’s
entropy was extracted, found to be consistent with a constant value. This
is in agreement with previous observations in deep inelastic e−p scattering
by H1. The approach was then extended to wide rapidity ranges and was
shown to explain the negative binomial shape of the measured distributions.
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