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Reconstruction of the invariant mass of the system with two tau lep-
tons faces a challenge of lack of neutrinos in the observed final state of taus’
decays. In this work, we introduce a novel algorithm, which is comparable
to other mass reconstruction algorithms in the field of mass resolution and
much better considering time performance. We test its performance on
Monte Carlo simulations with PYTHIA and Delphes and show that algo-
rithm achieves an average execution time of approximately 3 ms per event,
which is around two orders of magnitude faster than previous techniques,
while delivering a mass resolution characterized by a standard deviation of
22 GeV for Z0 bosons and 34.5 GeV for Higgs bosons. A Python implemen-
tation of the method is provided in an open-source repository, facilitating
broader adoption in high-energy physics analyses.
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1. Introduction

H → ττ is an interesting channel in Higgs analysis, as it allows one to
probe structure of Yukawa couplings in the lepton sector. However, studying
this channel faces the problem since in current detectors, we do not observe
taus directly and due to final-state neutrinos, we lose some information about
the decay. Reconstruction of the initial kinematics needs to use information
about missing transverse energy E⃗miss

T , which — mainly due to hadronic
environment — is not sufficiently well reconstructed at the Large Hadron
Collider.

The SVfit algorithm, the solution applied by the CMS Collaboration, is
based on the matrix element technique [1]. It relies either on the full matrix
element, related to the pp → H → τ+τ− → . . . process, or on the simplified
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version accounting only the H → τ+τ− → . . . decay. This approach —
although it offers one of the best mass reconstructions for this problem —
is insufficiently fast, taking in its simplified version about 0.25 seconds per
event on a modern computer. This is a serious obstacle for performing more
complex analyses, which stands as the motivation for development of faster
alternatives.

In this work, we introduce a novel algorithm, inspired by the SVfit. We
perform further simplifications, both in the area of Matrix Element factor
and assumption about uncertainties in the reconstruction. We utilize mainly
information from the covariance matrix of E⃗miss

T , as well as use Collinear
Approximation [2] to evaluate likelihood analytically. Such a solution allows
for the speed-up of the factor of around 100, compared to the SVfit algorithm.

2. Tau decay kinematics

We start with the analysis of the decay of one of the τ leptons. We
distinguish two classes of possible decay channels:

1. leptonic channels, where τ lepton can decay either into electron or
muon and two neutrinos, for example τ− → e− + ν̄e + ντ ,

2. hadronic channel, where instead of charged leptons, we have hadrons
in the final state. Such decay has only one tau neutrino in the final
state, for example τ− → π−ντ .

Regardless of the decay channel, we introduce the notion of the visible
and invisible products. Invisible products refer to the neutrinos that we
cannot observe in the detector, while visible products are everything else.
We denote their energies, total momenta, and masses by Einv, pinv,minv for
neutrinos and Evis, pvis,mvis for visible products.

We assume that all products are going in the same direction (Collinear
Approximation), which is valid in the case of Higgs decay, as kinematic
energy in the total two-tau system is around seventy times greater than the
τ rest mass.

Therefore, as we remove angular dependence, we are left with only two
unknown neutrinos kinematic parameters related to their energy and to-
tal momentum. We parametrize the system with the parameters x, which
is a fraction of energy carried by visible products (x = Evis

Eτ
), and mνν ,

which is the invariant mass of the neutrinos system (in the hadronic channels
mνν = 0).
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Following kinematic constraints, we set the parameter limits to be equal to

m2
vis

m2
τ

< x < 1 , (1)

0 < mνν < m2
τ (1− x) . (2)

3. Maximum Likelihood Estimation

To reconstruct the invariant mass of two-tau leptons, we use the Maxi-
mum Likelihood Estimation. Given a set of observed data d, we model the
likelihood for the initial Higgs mass mtest with the Matrix Element technique

L(d|mtest) = N
∫

dΦn |M(p,mtest)|2W (d|p) , (3)

where M(p,mtest) is a Matrix Element corresponding to the process, W (d|p)
is the transfer function between true (p) and reconstructed data,

∫
dΦn corre-

sponds to the integral over x and mνν of both taus, and N is a normalization
factor, not relevant in the searches of function’s maximum.

In principle, Matrix Element could be a product of two terms: Matrix
Elements for appropriate sub-process (e.g. H → τ+τ−) and the Breit–
Wigner distribution functions of the emerging particles. We simplified it by
accounting only the Breit–Wigner distribution of each ith tau lepton and —
due to small width of τ — make use of the narrow-width approximation∣∣∣BW(i)

τ

∣∣∣2 = π

mτΓτ
δ(mτ − ximvis,i) . (4)

For the transfer functions, we assume that most of the parameters are
reconstructed ideally and the only uncertainty comes from the E⃗miss

T recon-
struction. We model it by the normal distribution

W (d|p) = NTF exp

(
−1

2

(
E⃗true

T − E⃗rec
T

)†
V −1
MET

(
E⃗true

T − E⃗rec
T

))
, (5)

where V −1
MET is the covariance matrix of this distribution.

With this assumption, we can evaluate the integrals analytically, where
the outcome depends on the number of neutrinos in the final state (which
determines the number of parameters describing the phase space):

1. Fully hadronic decay (both tau leptons decay to hadrons):

2m2
ττ,vis

m3
test

log

(
xmax

xmin

)
,
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where mττ,vis stands for mass of the whole di-tau system and

xmin = max

(
x2,min,

(
mττ,vis

mtest

)2
)

,

xmax = min

(
1,

(
mττ,vis

mtest

)2 1

x1,min

)
.

2. Semi-leptonic decay (exactly one tau lepton decays to charged lepton):

m2
τ

2m2
ττ,vis

m3
test

(
log

(
xmax

xmin

)
+

(
mττ,vis

mtest

)2( 1

xmax
− 1

xmin

))
.

3. Fully leptonic decay (both tau leptons decay to charged leptons):

m4
τ

2m2
ττ,vis

m3
test

((
1 +

(
mττ,vis

mtest

)2
)
log

(
xmax

xmin

)

+

(
mττ,vis

mtest

)2( 1

xmax
− 1

xmin

)
− (xmax − xmin)

)
.

Following these results, we perform a grid search in the parameter space
and evaluate the likelihood on x1, x2 grid with 100× 100 points. We choose
the point with the highest likelihood and use it to calculate the mass with
the formula

m2
ττ =

(
Evis

1

x1
+

Evis
2

x2

)2

−
(
pvis1

x1
+

pvis2

x2

)2

. (6)

4. Performance

We test the algorithm on simulated samples of events. We prepare them
using Pythia 8.2 [3]. We used the CUETP8M1 tune [4] with NNPDF2.3LO
parton distribution function at the energy of 14 TeV proton–proton colli-
sions. We use Delphes 3.5.0 [5] with the Delphes_Card_CMS.tcl (with ∆R
changed to 0.4) to simulate the response of the detector. We do not simulate
pile-up in the analysis.

We perform a missing transverse energy reconstruction by comparing
true (generated) E⃗miss

T and the one reconstructed by Delphes. We fit the
normal distribution to their differences. Then, we extract the covariance
matrix of the obtained distribution and use it to model E⃗miss

T transfer func-
tion (Eq. (5)), the same for all events.
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We simulate a production of the Higgs boson in the gluon–gluon and
quark–quark production, as well as Z0 boson in the quark–quark produc-
tion. We consider the situation when the Z0 is not interfering with virtual
photon γ∗. The resulting reconstructions of Higgs and Z0 masses are shown
in figure 1.

Time performance of the algorithm is evaluated for different number of
events. We test up to the number of ten thousand events. The results are
presented in figure 2.
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Fig. 1. Reconstruction of the Z0 (left) and Higgs (right) bosons’ mass with the
FastMTT algorithm.
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Fig. 2. Time needed to calculate the masses of a given number of cases. Results
are shown on the logarithmic scale.
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5. Summary

In this analysis, we show an alternative algorithm for two-taus-invariant
mass reconstruction, which aims to be much faster than previous solutions.
We present basic assumptions that underlie the algorithm and test its per-
formance on Monte Carlo samples with simplified reconstruction.

We show that the algorithm is able to produce good mass resolution
in the case of Z0 and Higgs. Obtained uncertainties of around 22 GeV for
Z0and 34.5 GeV for Higgs are comparable to the previously used method [1].
We also show that concerning time performance, the algorithm is able to
maintain the pace of 3 ms/event, which is much better than existing alter-
natives.

To allow wider use of the algorithm, we also prepare Python implementa-
tion of it that is avaliable in the GitHub repository: https://github.com/
WiktorMat/FastMTT

This research was partially funded by the Ministry of Science and Higher
Education, Poland, grant 2022/WK/14.
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